20.已知cos(α+$\frac{π}{4}$)=$\frac{{\sqrt{5}}}{5}$,α∈(0,$\frac{π}{2}$),則sinα=$\frac{\sqrt{10}}{10}$.

分析 利用同角三角函數(shù)的基本關(guān)系求得sin(α+$\frac{π}{4}$)的值,再利用兩角差的正弦公式求得sinα=sin[($α+\frac{π}{4}$)-$\frac{π}{4}$]的值.

解答 解:∵cos(α+$\frac{π}{4}$)=$\frac{{\sqrt{5}}}{5}$,α∈(0,$\frac{π}{2}$),∴sin(α+$\frac{π}{4}$)=$\sqrt{{1-cos}^{2}(α+\frac{π}{4})}$=$\frac{2\sqrt{5}}{5}$,
則sinα=sin[($α+\frac{π}{4}$)-$\frac{π}{4}$]=sin(α+$\frac{π}{4}$)cos$\frac{π}{4}$-cos(α+$\frac{π}{4}$)sin$\frac{π}{4}$=$\frac{2\sqrt{5}}{5}•\frac{\sqrt{2}}{2}$-$\frac{\sqrt{5}}{5}•\frac{\sqrt{2}}{2}$=$\frac{{\sqrt{10}}}{10}$,
故答案為:$\frac{\sqrt{10}}{10}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的正弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知點(diǎn)M,N是拋物線y=4x2上不同的兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),且滿(mǎn)足∠MFN=135°,弦MN的中點(diǎn)P到直線l:y=-$\frac{1}{16}$的距離為d,若|MN|2=λ•d2,則λ的最小值為( 。
A.$\frac{\sqrt{2}}{2}$B.1-$\frac{\sqrt{2}}{2}$C.1+$\frac{\sqrt{2}}{2}$D.2+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.拋物線y2=-4x上的點(diǎn)P(-3,m)到焦點(diǎn)的距離等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在平面直角坐標(biāo)中,經(jīng)伸縮變換后曲線x2+y2=16變換為橢圓x′2+$\frac{y'}{16}^2}$=1,此伸縮變換公式是( 。
A.$\left\{{\begin{array}{l}{x=\frac{1}{4}x'}\\{y=y'}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x=4x'}\\{y=y'}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x=2x'}\\{y=y'}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x=4x'}\\{y=8y'}\end{array}}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)a1=1,an+1=$\sqrt{{a_n}^2-2{a_n}+2}$+1
(1)求a2,a3,a4,并猜想通項(xiàng)公式.
(2)用數(shù)學(xué)歸納法證明(1)的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若數(shù)列a,1,b,7是等差數(shù)列,則$\frac{a}$=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在等比數(shù)列{an}中,a2a3=5,a5a6=10,則a8a9=( 。
A.15B.20C.25D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.復(fù)數(shù)$\frac{1}{{{{(1+i)}^2}}}$的虛部是$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(1)已知f(x)-2f(-x)=-x+3,求f(x);
(2)已知f(x)-2f($\frac{1}{x}$)=x2-3,(x≠0),求f(x).

查看答案和解析>>

同步練習(xí)冊(cè)答案