【題目】已知點O(0,0),A(1,2),B(4,5)=+t,

:(1)t為何值時,Px軸上?y軸上?在第二象限?

(2)四邊形OABP能否成為平行四邊形?若能求出相應的t?若不能請說明理由.

【答案】(1) t=- , t=- , -<t<- (2) 四邊形OABP不能成為平行四邊形

【解析】

試題(1)利用向量的線性運算和向量相等即可得出;

(2)若四邊形OABP能成為平行四邊形,則=.利用向量相等即可得出.

試題解析:

P(x,y),則由=+t得,(x,y)=(1,2)+t(3,3)=(3t+1,3t+2).

(1)3t+2=0,即t=-時,點Px軸上;當3t+1=0,即t=-時,點Py軸上;當-<t<-時,點P在第二象限.

(2)若四邊形OABP能成為平行四邊形,則=,即(3t+1,3t+2)=(3,3),無解,故四邊形OABP不能成為平行四邊形.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下圖中有一個信號源和五個接收器,接收器與信號源在同一個串聯(lián)線路中時,就能接收到信號,否則就不能接收到信號。若將圖中左端的六個接線點隨機地平均分成三組,將右端的六個接線點也隨機地平均分成三組,再把所有六組中每組的兩個接線點用導線連接,則這五個接收器不能同時接收到信號的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“珠算之父”程大為是我國明代偉大數(shù)學家,他的應用數(shù)學巨著《算法統(tǒng)綜》的問世,標志著我國的算法由籌算到珠算轉變的完成,程大位在《算法統(tǒng)綜》中常以詩歌的形式呈現(xiàn)數(shù)學問題,其中有一首“竹筒容米”問題:“家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)三升九,上稍四節(jié)儲三升,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明”((注)三升九:升,次第盛;盛米容積依次相差同一數(shù)量.)用你所學的數(shù)學知識求得中間兩節(jié)的容積為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)積極發(fā)展電商,通過近些年工作的開展在新農村建設和扶貧過程中起到了非常重要的作用,促進了農民生活富裕,為了更好地了解本地區(qū)某一特色產品的宣傳費 (千元)對銷量 (千件)的影響,統(tǒng)計了近六年的數(shù)據(jù)如下:

(1)若近6年的宣傳費與銷量呈線性分布,由前5年數(shù)據(jù)求線性回歸直線方程,并寫出的預測值;

(2)若利潤與宣傳費的比值不低于20的年份稱為“吉祥年”,在這6個年份中任意選2個年份,求這2個年份均為“吉祥年”的概率

附:回歸方程的斜率與截距的最小二乘法估計分別為,

,其中, 的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), 為自然對數(shù)的底數(shù).

(1)若當時, 恒成立,求的取值范圍;

(2)設,若恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象兩相鄰對稱軸之間的距離是,若將的圖象向右平移個單位長度,所得圖象對應的函數(shù)為奇函數(shù).

1)求的解析式;

2)求的對稱軸及單調增區(qū)間;

3)若對任意,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

1)若曲線處的切線與直線垂直,求實數(shù)的值;

2)設,若對任意兩個不等的正數(shù),都有恒成立,求實數(shù)的取值范圍;

3)若上存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,假命題是( )

A. B. ,

C. 的充要條件是 D. 的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解《中華人民共和國道路交通安全法》在學生中的普及情況,調查部門對某校6名學生進行問卷調查,6人得分情況為:5,6,7,8,9,10.把這6名學生的得分看成一個總體.

(1)求該總體的平均數(shù);

(2)用簡單隨機抽樣方法從這6名學生中抽取2,他們的得分組成一個樣本.求該樣本平均數(shù)與總體平均數(shù)之差的絕對值不超過0.5的概率.

查看答案和解析>>

同步練習冊答案