長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點.
(I)求證:直線AE⊥平面A1D1E;
(II)求三棱錐A-A1D1E的體積.
(I)證明:∵長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點
∴AE=A1E=
2
,AA1=2,
∴AA12=AE2+A1E2
∴AE⊥A1E
又∵D1A1⊥平面A1EA,AE?平面A1EA
∴AE⊥A1D1,又D1A1∩A1E=A1,
∴AE⊥平面A1D1E;
(II)由(I)中AE⊥平面A1D1E,
VA-A1D1E=
1
3
S△A1D1E•AE=
1
3
×
1
2
×1×
2
×
2
=
1
3

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,四邊形ABCD是平行四邊形,E、F分別為PA、BC的中點.
求證:EF平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是棱AA1,BB1的中點.
(1)求證:平面A1BC1平面ACD1
(2)求異面直線A1F與D1E所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線l⊥平面α,有以下幾個判斷:
①若m⊥l,則mα,
②若m⊥α,則ml
③若mα,則m⊥l,
④若ml,則m⊥α,
上述判斷中正確的是( 。
A.①②③B.②③④C.①③④D.①②④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知四邊形ABCD中,∠B=∠D=90°,AD=CD=
6
,∠BAC=60°,E為AC的中點;現(xiàn)將△ACD沿對角線AC折起,使點D在平面ABC上的射影H落在BC上.
(1)求證:AB⊥平面BCD;
(2)求三棱錐D-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,底面四邊形ABCD是正方形,PD⊥平面ABCD,E為PC的中點.
求證:
(1)PA平面BDE;
(2)AC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四棱錐P-ABCD底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點.
(1)證明:AE⊥PD;
(2)設(shè)AB=2,若H為線段PD上的動點,EH與平面PAD所成的最大角的正切值為
6
2
,求此時異面直線AE和CH所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,AB⊥側(cè)面BB1C1C,已知BB1=2,AB=
2
,BC=1,∠BCC1=
π
3

(1)求證:C1B⊥平面ABC;
(2)試在棱CC1(不包含端點C,C1)上確定一點E的位置,使得EA⊥EB1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,BD為AC邊上的高,BD=1,BC=AD=2,沿BD將△ABD翻折,使得∠ADC=30°,得幾何體B-ACD
(Ⅰ)求證:AC⊥平面BCD;
(Ⅱ)求點D到面ABC的距離.

查看答案和解析>>

同步練習冊答案