(12分) 在直角坐標(biāo)系中,點(diǎn)到點(diǎn),的距離之和是,點(diǎn)的軌跡是,直線與軌跡交于不同的兩點(diǎn).⑴求軌跡的方程;⑵是否存在常數(shù),?若存在,求出的值;若不存在,請說明理由.

⑴∵點(diǎn),的距離之和是,∴的軌跡是長軸為,焦點(diǎn)在軸上焦距為的橢圓,其方程為
⑵將,代入曲線的方程,整理得 ①,設(shè)由方程①,得, ② , 又   ③,若,得,將②、③代入上式,解得.又因的取值應(yīng)滿足,即(*),將代入(*)式知符合題意.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)在直角坐標(biāo)系中橢圓的左、右焦點(diǎn)分別為、.其中也是拋物線的焦點(diǎn),點(diǎn)在第一象限的交點(diǎn),且.
(1)求的方程;(6分)
(2)平面上的點(diǎn)滿足,直線,且與交于、兩點(diǎn),若,求直線的方程. (8分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,且過,設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動點(diǎn),求線段中點(diǎn)的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,記點(diǎn)P的軌跡為E.
(1)求軌跡E的方程;
(2)設(shè)直線l過點(diǎn)F2且與軌跡E交于P、Q兩點(diǎn),若無論直線l繞點(diǎn)F2怎樣轉(zhuǎn)動,在x軸上總存在定點(diǎn),使恒成立,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題11分)如圖1,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為(1,4),交x軸于A、B,交y軸于D,其中B點(diǎn)的坐標(biāo)為(3,0)
(1)求拋物線的解析式
(2)如圖2,過點(diǎn)A的直線與拋物線交于點(diǎn)E,交y軸于點(diǎn)F,其中E點(diǎn)的橫坐標(biāo)為2,若直線PQ為拋物線的對稱軸,點(diǎn)G為PQ上一動點(diǎn),則軸上是否存在一點(diǎn)H,使D、G、F、H四點(diǎn)圍成的四邊形周長最小.若存在,求出這個最小值及G、H的坐標(biāo);若不存在,請說明理由.
(3)如圖3,拋物線上是否存在一點(diǎn),過點(diǎn)軸的垂線,垂足為,過點(diǎn)作直線,交線段于點(diǎn),連接,使,若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
      圖1                       圖2                          圖3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知直線相交于A、B兩點(diǎn)。
(1)若橢圓的離心率為,焦距為2,求橢圓的標(biāo)準(zhǔn)方程;
(2)若(其中O為坐標(biāo)原點(diǎn)),當(dāng)橢圓的離率時(shí),求橢圓的長軸長的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓、拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上取兩個點(diǎn),將其坐標(biāo)記錄于下表中:


3
2
4



0
4

(Ⅰ)求的標(biāo)準(zhǔn)方程;
(Ⅱ)請問是否存在直線滿足條件:①過的焦點(diǎn);②與交不同兩點(diǎn)且滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

極坐標(biāo)方程ρ=cosθ和參數(shù)方程 (t為參數(shù))所表示的圖形分別為(  )

A.圓、直線 B.直線、圓 C.圓、圓 D.直線、直線 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在極坐標(biāo)系中,直線的方程為,則點(diǎn)到直線的距離為

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案