設(shè)|
a
|=1,|
b
|=2,且
a
b
夾角120°,則|2
a
+
b
|等于( 。
A、2
B、4
C、12
D、2
3
分析:利用向量的數(shù)量積公式求出
a
b
;利用向量模的平方等于向量的平方,再開方求出向量的模.
解答:解:據(jù)題意
a
b
=|
a
||
b
|cos120°
=1×2×(-
1
2
)=-1

(2
a
+
b
)
2
=4
a
2
+4
a
b
+
b
2
=4-4+4=4
|2
a
+
b
|=2

故選A
點(diǎn)評:本題考查向量的數(shù)量積公式、考查向量模的平方等于向量的平方常利用此性質(zhì)解決向量模的問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)|
a
|=1,|
b
|=2
,且
a
、
b
夾角120°,則|2
a
+
b
|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)|
a
|=1
,|
b
|=2
,|
c
|=3
,且
a
b
=0
,則(
a
+2
b
)
c
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f (x)、g(x)都是定義在R上的函數(shù),如果存在實(shí)數(shù)m、n使得h (x)=m f(x)+ng(x),那么稱h (x)為f (x)、g(x)在R上生成的一個(gè)函數(shù).設(shè)f (x)=x2+ax,g(x)=x+b(a,b∈R),l(x)=2x2+3x-1,h (x)為f (x)、g(x)在R上生成的一個(gè)二次函數(shù).
(Ⅰ)設(shè)a=1,b=2,若h (x)為偶函數(shù),求h(
2
)
;
(Ⅱ)設(shè)b>0,若h (x)同時(shí)也是g(x)、l(x)在R上生成的一個(gè)函數(shù),求a+b的最小值;
(Ⅲ)試判斷h(x)能否為任意的一個(gè)二次函數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=na+n(n-1)b,(n=1,2,…),a、b是常數(shù)且b≠0.
(1)證明:以(an,
Sn
n
-1)為坐標(biāo)的點(diǎn)Pn(n=1,2,…)都落在同一條直線上,并寫出此直線的方程.
(2)設(shè)a=1,b=
1
2
,圓C是以(r,r)為圓心,r為半徑的圓(r>0),在(2)的條件下,求使得點(diǎn)P1、P2、P3都落在圓C外時(shí),r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù),且a≠0),x∈R,H(x)=
f(x)
0
(x>0)
(x=0)
-f(x)(x<0)

(1)若f(-1)=0,且方程ax2+bx+1=0(a≠0)有唯一實(shí)根,求H(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k取值范圍;
(3)設(shè)a=1且b=0,解關(guān)于m的不等式:H(m2+2)+H(3m)>0.

查看答案和解析>>

同步練習(xí)冊答案