(本小題13分)

定義在R上的函數(shù)滿足:如果對(duì)任意,都有,則稱是R上凹函數(shù)。已知二次函數(shù))。

   (1)求證:當(dāng)時(shí),函數(shù)為凹函數(shù);

   (2)如果時(shí),,試求a的取值范圍。

 

【答案】

 

             6分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題13分)某飲料生產(chǎn)企業(yè)為了占有更多的市場(chǎng)份額,擬在2010年度進(jìn)行一系列促銷活動(dòng),經(jīng)過市場(chǎng)調(diào)查和測(cè)算,飲料的年銷售量x萬件與年促銷費(fèi)t萬元間滿足。已知2010年生產(chǎn)飲料的設(shè)備折舊,維修等固定費(fèi)用為3 萬元,每生產(chǎn)1萬件飲料需再投入32萬元的生產(chǎn)費(fèi)用,若將每件飲料的售價(jià)定為:其生產(chǎn)成本的150%與平均每件促銷費(fèi)的一半之和,則該年生產(chǎn)的飲料正好能銷售完。

(1)將2010年的利潤y(萬元)表示為促銷費(fèi)t(萬元)的函數(shù);

(2)該企業(yè)2010年的促銷費(fèi)投入多少萬元時(shí),企業(yè)的年利潤最大?

(注:利潤=銷售收入—生產(chǎn)成本—促銷費(fèi),生產(chǎn)成本=固定費(fèi)用+生產(chǎn)費(fèi)用)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年陜西省高三上學(xué)期月考理科數(shù)學(xué) 題型:解答題

(本小題13分)某飲料生產(chǎn)企業(yè)為了占有更多的市場(chǎng)份額,擬在2010年度進(jìn)行

一系列促銷活動(dòng),經(jīng)過市場(chǎng)調(diào)查和測(cè)算,飲料的年銷售量x萬件與年促銷費(fèi)t萬元間滿足

。已知2010年生產(chǎn)飲料的設(shè)備折舊,維修等固定費(fèi)用為3 萬元,每生產(chǎn)1萬件

 

飲料需再投入32萬元的生產(chǎn)費(fèi)用,若將每件飲料的售價(jià)定為:其生產(chǎn)成本的150%與平均

每件促銷費(fèi)的一半之和,則該年生產(chǎn)的飲料正好能銷售完。

(1)將2010年的利潤y(萬元)表示為促銷費(fèi)t(萬元)的函數(shù);

(2)該企業(yè)2010年的促銷費(fèi)投入多少萬元時(shí),企業(yè)的年利潤最大?

(注:利潤=銷售收入—生產(chǎn)成本—促銷費(fèi),生產(chǎn)成本=固定費(fèi)用+生產(chǎn)費(fèi)用)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省協(xié)作體高三第二次聯(lián)考數(shù)學(xué)理卷 題型:解答題

(本小題13分)

已知拋物線方程為,過作直線.

①若軸不垂直,交拋物線于A、B兩點(diǎn),是否存在軸上一定點(diǎn),使得?若存在,求出m的值;若不存在,請(qǐng)說明理由?

②若軸垂直,拋物線的任一切線與軸和分別交于M、N兩點(diǎn),則自點(diǎn)M到以QN為直徑的圓的切線長為定值,試證之;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年天津市高三十校聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)在直角坐標(biāo)系上取兩個(gè)定點(diǎn),再取兩個(gè)動(dòng)點(diǎn)

,且

(Ⅰ)求直線交點(diǎn)的軌跡的方程

(Ⅱ)已知點(diǎn)()是軌跡上的定點(diǎn),是軌跡上的兩個(gè)動(dòng)點(diǎn),如果直線

的斜率與直線的斜率滿足,試探究直線的斜率是否是

定值?若是定值,求出這個(gè)定值,若不是,說明理由

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年天津市高三十校聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)在直角坐標(biāo)系上取兩個(gè)定點(diǎn),再取兩個(gè)動(dòng)點(diǎn)

,且

(Ⅰ)求直線交點(diǎn)的軌跡的方程

(Ⅱ)已知點(diǎn)()是軌跡上的定點(diǎn),是軌跡上的兩個(gè)動(dòng)點(diǎn),如果直線

的斜率與直線的斜率滿足,試探究直線的斜率是否是

定值?若是定值,求出這個(gè)定值,若不是,說明理由

 

查看答案和解析>>

同步練習(xí)冊(cè)答案