(本小題13分)

定義在R上的函數(shù)滿足:如果對任意,都有,則稱是R上凹函數(shù)。已知二次函數(shù))。

   (1)求證:當時,函數(shù)為凹函數(shù);

   (2)如果時,,試求a的取值范圍。

 

【答案】

 

             6分

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(本小題13分)某飲料生產(chǎn)企業(yè)為了占有更多的市場份額,擬在2010年度進行一系列促銷活動,經(jīng)過市場調(diào)查和測算,飲料的年銷售量x萬件與年促銷費t萬元間滿足。已知2010年生產(chǎn)飲料的設(shè)備折舊,維修等固定費用為3 萬元,每生產(chǎn)1萬件飲料需再投入32萬元的生產(chǎn)費用,若將每件飲料的售價定為:其生產(chǎn)成本的150%與平均每件促銷費的一半之和,則該年生產(chǎn)的飲料正好能銷售完。

(1)將2010年的利潤y(萬元)表示為促銷費t(萬元)的函數(shù);

(2)該企業(yè)2010年的促銷費投入多少萬元時,企業(yè)的年利潤最大?

(注:利潤=銷售收入—生產(chǎn)成本—促銷費,生產(chǎn)成本=固定費用+生產(chǎn)費用)

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年陜西省高三上學期月考理科數(shù)學 題型:解答題

(本小題13分)某飲料生產(chǎn)企業(yè)為了占有更多的市場份額,擬在2010年度進行

一系列促銷活動,經(jīng)過市場調(diào)查和測算,飲料的年銷售量x萬件與年促銷費t萬元間滿足

。已知2010年生產(chǎn)飲料的設(shè)備折舊,維修等固定費用為3 萬元,每生產(chǎn)1萬件

 

飲料需再投入32萬元的生產(chǎn)費用,若將每件飲料的售價定為:其生產(chǎn)成本的150%與平均

每件促銷費的一半之和,則該年生產(chǎn)的飲料正好能銷售完。

(1)將2010年的利潤y(萬元)表示為促銷費t(萬元)的函數(shù);

(2)該企業(yè)2010年的促銷費投入多少萬元時,企業(yè)的年利潤最大?

(注:利潤=銷售收入—生產(chǎn)成本—促銷費,生產(chǎn)成本=固定費用+生產(chǎn)費用)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江西省協(xié)作體高三第二次聯(lián)考數(shù)學理卷 題型:解答題

(本小題13分)

已知拋物線方程為,過作直線.

①若軸不垂直,交拋物線于A、B兩點,是否存在軸上一定點,使得?若存在,求出m的值;若不存在,請說明理由?

②若軸垂直,拋物線的任一切線與軸和分別交于M、N兩點,則自點M到以QN為直徑的圓的切線長為定值,試證之;

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年天津市高三十校聯(lián)考理科數(shù)學 題型:解答題

(本小題滿分13分)在直角坐標系上取兩個定點,再取兩個動點

,且

(Ⅰ)求直線交點的軌跡的方程

(Ⅱ)已知點()是軌跡上的定點,是軌跡上的兩個動點,如果直線

的斜率與直線的斜率滿足,試探究直線的斜率是否是

定值?若是定值,求出這個定值,若不是,說明理由

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年天津市高三十校聯(lián)考理科數(shù)學 題型:解答題

(本小題滿分13分)在直角坐標系上取兩個定點,再取兩個動點

,且

(Ⅰ)求直線交點的軌跡的方程

(Ⅱ)已知點()是軌跡上的定點,是軌跡上的兩個動點,如果直線

的斜率與直線的斜率滿足,試探究直線的斜率是否是

定值?若是定值,求出這個定值,若不是,說明理由

 

查看答案和解析>>

同步練習冊答案