圓x2+y2-8x+6y+16=0與圓x2+y2=64的位置關(guān)系是( )
A.相交
B.相離
C.內(nèi)切
D.外切
【答案】分析:把第一個(gè)圓的方程化為標(biāo)準(zhǔn)方程,找出圓心A的坐標(biāo)和半徑r,再由第二個(gè)圓的方程找出圓心B的坐標(biāo)和半徑R,利用兩點(diǎn)間的距離公式求出兩圓心間的距離d,發(fā)現(xiàn)d=R-r,從而判斷出兩圓位置關(guān)系是內(nèi)切.
解答:解:把圓x2+y2-8x+6y+16=0化為標(biāo)準(zhǔn)方程得:(x-4)2+(y+3)2=9,
∴圓心A的坐標(biāo)為(4,-3),半徑r=3,
由圓x2+y2=64,得到圓心B坐標(biāo)為(0,0),半徑R=8,
兩圓心間的距離d=|AB|==5,
∵8-3=5,即d=R-r,
則兩圓的位置關(guān)系是內(nèi)切.
故選C
點(diǎn)評:此題考查了圓的標(biāo)準(zhǔn)方程,兩點(diǎn)間的基本公式,以及圓與圓位置關(guān)系的判斷,圓與圓位置關(guān)系的判斷方法為:當(dāng)0≤d<R-r時(shí),兩圓內(nèi)含;當(dāng)d=R-r時(shí),兩圓內(nèi)切;當(dāng)R-r<d<R+r時(shí),兩圓相交;當(dāng)d=R+r時(shí),兩圓外切;當(dāng)d>R+r時(shí),兩圓相離(d表示兩圓心間的距離,R及r分別表示兩圓的半徑).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線ax+by+1=0(a、b>0)過圓x2+y2+8x+2y+1=0的圓心,則
1
a
+
4
b
的最小值為( 。
A、8B、12C、16D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)P(2,1)能作
0
0
條直線與圓x2+y2-8x-2y-13=0相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過原點(diǎn)O作圓x2+y2-8x=0的弦OA.
(1)求弦OA中點(diǎn)M的軌跡方程;
(2)延長OA到N,使|OA|=|AN|,求N點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•上海模擬)圓x2+y2-8x+6y+16=0與圓x2+y2=64的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l:ax+by+4=0(a>0,b>0)始終平分圓x2+y2+8x+2y+1=0,則ab的最大值為( 。

查看答案和解析>>

同步練習(xí)冊答案