已知點(diǎn)F1(-4,0),F(xiàn)2(4,0),又P(x,y)是曲線上的點(diǎn),則( )
A.|PF1|+|PF2|=10
B.|PF1|+|PF2|<10
C.|PF1|+|PF2|≤10
D.|PF1|+|PF2|≥10
【答案】分析:法一:根據(jù)方程,可以聯(lián)想橢圓,根據(jù)橢圓的定義可知,是以點(diǎn)F1(-4.0),F(xiàn)2(4,0)為焦點(diǎn)的橢圓,在橢圓上任意取點(diǎn),可以證明點(diǎn)在曲線的內(nèi)部或在曲線上,即橢圓上的點(diǎn)在封閉曲線的內(nèi)部或曲線上,故可得結(jié)論.
法二:任取點(diǎn)P(x,y)在曲線上,可令,A∈[0,],易證得sinA+cosA≥1,即由此知點(diǎn)P(x,y)在上可其外部,再由橢圓的定義易選出正確選項(xiàng)
解答:解:根據(jù)方程,可以聯(lián)想橢圓,
在橢圓上取點(diǎn)Q(5cosα,3sinα),即x=5cosα,y=3sinα
=2
∵0≤sin2α≤1,

即點(diǎn)Q在曲線的內(nèi)部或在曲線上
所以橢圓上的點(diǎn)在封閉曲線的內(nèi)部或曲線上
由題意,是以點(diǎn)F1(-4.0),F(xiàn)2(4,0)為焦點(diǎn)的橢圓
∴當(dāng)P點(diǎn)恰好取在頂點(diǎn)上時(shí),此時(shí)點(diǎn)P在橢圓上,故有|PF1|+|PF2|=10
點(diǎn)P不在曲線的頂點(diǎn)上時(shí),必有點(diǎn)P在橢圓的外部,故|PF1|+|PF2|>10
綜上所述,|PF1|+|PF2|≥10
故選D.
法二:任取點(diǎn)P(x,y)在曲線上,可令,A∈[0,]
則有sinA+cosA≥1,即由此知點(diǎn)P(x,y)在上可其外部,故有|PF1|+|PF2|≥10
故選D
點(diǎn)評:本題以曲線為載體,考查類比思想,考查橢圓的定義,考查學(xué)生分析解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F1(-4,0),F(xiàn)2(4,0),又P(x,y)是曲線
|x|
5
+
|y|
3
=1
上的點(diǎn),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F1(-4,0)和F2(4,0),曲線上的動(dòng)點(diǎn)P到F1、F2的距離之差為6,則曲線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F1(-4,0),F(xiàn)2(4,0),又P(x,y)是曲線(
x
5
)4+(
y
3
)4=1
上的點(diǎn),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省聊城市某重點(diǎn)高中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知點(diǎn)F1(-4,0)和F2(4,0),曲線上的動(dòng)點(diǎn)P到F1、F2的距離之差為6,則曲線方程為( )
A.-=1
B.-=1(y>0)
C.-=1或 -=1
D.-=1
E.-=1(x>0)

查看答案和解析>>

同步練習(xí)冊答案