已知矩陣A=
12
-14
.(1)求A特征值λ1,λ2及對應(yīng)的特征向量
α1
,
α2
.(2)求A5
3
1
分析:(1)由特征值的定義f(λ)=|λE-A|=0,解方程即可.解出特征值,求對應(yīng)的特征向量即求方程組的解.
(2)將
3
1
2
1
1
1
表達(dá),由特征向量的性質(zhì)即可求解.
解答:解:(1)f(λ)=
.
λ-1-2
1λ-4
.
=0?λ1=2,λ2=3

當(dāng)λ1=2時,
x-2y=0
x-2y=0
?
α1
=
2
1
,當(dāng)λ2=3時,
2x-2y=0
x-y=0
?
α2
=
1
1

(2)令
3
1
=m
2
1
+n
1
1
,則
2m+n=3
m+n=1
?
m=2
n=-1
A5
3
1
=A5(2
α1
-
α2
)=2
λ
5
1
α1
-
λ
5
2
α2
=64
2
1
-35
1
1
=
-115
-179
點評:本題考查矩陣的特征值和特征向量,及特征向量的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評分,解答時應(yīng)寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(不與點A,C重合),延長BD至點E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線C的極坐標(biāo)方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設(shè)a,b,c均為正實數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)(選修4-2 矩陣與變換)已知矩陣A=
12
-14
,向量
α
=
7
4

①求矩陣A的特征值λ1、λ2和特征向量
α1
α2
;
②求A5
α
的值.
(2)選修4-4:坐標(biāo)系與參數(shù)方程求極坐標(biāo)系中,圓ρ=2上的點到直線ρ(cosθ+
3
sinθ)=6
的距離的最小值.
(3)選修4-5;不等式選講知x,y,z為正實數(shù),且
1
x
+
1
y
+
1
z
=1,求x+4y+9z的最小值及取得最小值時x,y,z的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鹽城模擬)已知矩陣A=
12
-14
,求A的特征值λ1、λ2及對應(yīng)的特征向量α1、α2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-2;矩陣與變換
已知矩陣A=
.
12
-14
.
,向量a=
.
4 
7 
.

(I)求矩陣A的特征值λ1、λ2和特征向量a1、a2;
(Ⅱ)求A5α的值.

查看答案和解析>>

同步練習(xí)冊答案