8.已知直線y=a(0<a<1)與函數(shù)f(x)=sinωx在y軸右側(cè)的前12個交點橫坐標依次為x1,x2,x3,…,x12,且x1=$\frac{π}{4}$,x2=$\frac{3π}{4}$,x3=$\frac{9π}{4}$,則x1+x2+x3+…+x12=66π.

分析 由題意,函數(shù)的周期為2π,ω=1,f(x)=sinx,a=$\frac{\sqrt{2}}{2}$,根據(jù)對稱性,即可得出結(jié)論.

解答 解:由題意,函數(shù)的周期為2π,ω=1,f(x)=sinx,a=$\frac{\sqrt{2}}{2}$,
∴x1+x2+x3+…+x12=π+5π+9π+13π+17π+21π=66π.
故答案為66π.

點評 本題考查三角函數(shù)的圖象與性質(zhì),考查對稱性,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,正方形ABCD與梯形AMPD所在的平面互相垂直,AD⊥PD,MA∥PD,MA=AD=$\frac{1}{2}$PD=1.
(1)求證:MB∥平面PDC;
(2)求二面角M-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,角A、B、C所對的邊分別為a、b、c.已知acosAcosB-bsin2A-ccosA=2bcosB.
(1)求B;
(2)若$b=\sqrt{7}a,{S_{△ABC}}=2\sqrt{3}$,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},則A∩(∁UB)為(  )
A.{1,4,6}B.{2,4,6}C.{2,4}D.{4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.要得到y(tǒng)=sin$\frac{x}{2}$的圖象,只需將y=cos($\frac{x}{2}$-$\frac{π}{4}$)的圖象上的所有點( 。
A.向右平移$\frac{π}{2}$B.向左平移$\frac{π}{2}$C.向左平移$\frac{π}{4}$D.向右平移$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知全集為全體實數(shù)R,集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a}.
(1)求(∁RA)∩B;
(2)若A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.lg2+lg5=1;${2^{{{log}_2}3}}-{8^{\frac{1}{3}}}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知命題p:平面內(nèi)垂直于同一直線的兩條直線不平行,命題q:平面內(nèi)垂直于同一直線的兩條直線平行.請你寫出以上命題的“p或q”“p且q”“非p”形式的命題,并判斷其真假.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知命題p:$\frac{{x}^{2}}{3-a}-\frac{{y}^{2}}{a-5}=1$可表示焦點在x軸上的雙曲線;命題q:若實數(shù)a,b滿足a>b,則a2>b2.則下列命題中:①p∨q②p∧q③(¬p)∨q④(¬p)∧(¬q)真命題的序號為( 。
A.B.③④C.①③D.①②③

查看答案和解析>>

同步練習冊答案