已知橢圓的中心在坐標原點,焦點在軸上,其左、右焦點分別為、,短軸長為,點在橢圓上,且滿足的周長為6.
(Ⅰ)求橢圓的方程;;
(Ⅱ)設(shè)過點的直線與橢圓相交于A、B兩點,試問在x軸上是否存在一個定點M使恒為定值?若存在求出該定值及點M的坐標,若不存在請說明理由.
(Ⅰ)
(Ⅱ)存在這樣的定點,使得。
【解析】
試題分析:(Ⅰ) 所以橢圓的方程為
4分
(Ⅱ)假設(shè)存在這樣的定點,設(shè),直線方程為
則
=
聯(lián)立 消去得
令 即 ,
當軸時,令,仍有
所以存在這樣的定點,使得 13分
考點:本題主要考查橢圓的標準方程,橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,平面向量的坐標運算。
點評:中檔題,求橢圓的標準方程,主要運用了橢圓的幾何性質(zhì),a,b,c,e的關(guān)系。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。對于存在性問題,往往假定存在,條件存在的條件是否具備,而明確存在與否。本題應(yīng)用韋達定理,結(jié)合向量數(shù)量積的坐標運算,簡化了解題過程。
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2
| ||
5 |
| ||
5 |
AC |
AO |
AC |
AO |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
x2 |
36 |
y2 |
9 |
x2 |
36 |
y2 |
9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
| ||
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com