【題目】設(shè)函數(shù).
(1)若不等式對任意的,都成立,求實數(shù)m的取值范圍;
(2)關(guān)于x的方程在上有且只有一個解,求實數(shù)k的取值范圍.
參考數(shù)據(jù):.
【答案】(1)(2)
【解析】
由題意,將轉(zhuǎn)化為,進(jìn)而轉(zhuǎn)化為,求出單調(diào)性得出最值即可求出m取值取值范圍;
將方程在上有且只有一個解,轉(zhuǎn)化為,
令,研究其單調(diào)性和最值即可得到實數(shù)k的取值范圍.
(1)由題,即對任意的都成立,
令,則為關(guān)于k的一次函數(shù),.
因為,
令,,因為,
,則在上單調(diào)遞增,
,
所以,即m的取值范圍是.
(2)方程在上有且只有一個解,
即關(guān)于x的方程在上有且只有一個解.
整理方程得,
令,
令,則
于是,在上單調(diào)遞增.
因為,所以當(dāng)時,,從而,單調(diào)遞減;
當(dāng)時,,從而,單調(diào)遞增.
,
因為,所以,
所以實數(shù)k的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲袋中裝有3個白球和5個黑球,乙袋中裝有4個白球和6個黑球,現(xiàn)從甲袋中隨機(jī)取出一個球放入乙袋中,充分混合后,再從乙袋中隨機(jī)取出一個球放回甲袋中,則甲袋中白球沒有減少的概率為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點在拋物線的準(zhǔn)線上,且橢圓的短軸長為2,分別為橢圓的左,右焦點,分別為橢圓的左,右頂點,設(shè)點在第一象限,且軸,連接交橢圓于點,直線的斜率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若三角形的面積等于四邊形的面積,求的值;
(Ⅲ)設(shè)點為的中點,射線(為原點)與橢圓交于點,滿足,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若,對于給定實數(shù),總存在實數(shù),使得關(guān)于的方程恰有3個不同的實數(shù)根.
(i)求實數(shù)的取值范圍;
(ii)記,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠連續(xù)6天對新研發(fā)的產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到一組數(shù)據(jù)如下表所示
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 | 4月6日 |
試銷價元 | 9 | 11 | 10 | 12 | 13 | 14 |
產(chǎn)品銷量件 | 40 | 32 | 29 | 35 | 44 |
(1)試根據(jù)4月2日、3日、4日的三組數(shù)據(jù),求關(guān)于的線性回歸方程,并預(yù)測4月6日的產(chǎn)品銷售量;
(2)若選取兩組數(shù)據(jù)確定回歸方程,求選取得兩組數(shù)據(jù)恰好是不相鄰兩天的事件的概率.
參考公式:
其中 ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足.
(1)若數(shù)列的首項為,其中,且,,構(gòu)成公比小于0的等比數(shù)列,求的值;
(2)若是公差為d(d>0)的等差數(shù)列的前n項和,求的值;
(3)若,,且數(shù)列單調(diào)遞增,數(shù)列單調(diào)遞減,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長為4,且經(jīng)過點.
(1)求橢圓的方程;
(2)直線的斜率為,且與橢圓相交于,兩點(異于點),過作的角平分線交橢圓于另一點.
(i)證明:直線與坐標(biāo)軸平行;
(ii)當(dāng)時,求四邊形的面積
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com