7.斜三棱柱一個(gè)側(cè)面面積為5$\sqrt{3}$,這個(gè)側(cè)面與所對(duì)棱的距離是2$\sqrt{3}$,此棱柱的體積為15.

分析 將該斜三棱柱補(bǔ)成一個(gè)四棱柱,將其放倒使側(cè)面與它所對(duì)的棱的距離為2$\sqrt{3}$,成為四棱柱的高,然后根據(jù)四棱柱的體積公式求體積.最后除以2得到三棱柱的體積.

解答 解:將該斜三棱柱補(bǔ)成一個(gè)四棱柱,該四棱柱的底面積為5$\sqrt{3}$,高為2$\sqrt{3}$,
故四棱柱的體積為5$\sqrt{3}$×2$\sqrt{3}$=30,
∴V斜三棱柱=$\frac{1}{2}×30$=15.
故答案為:15.

點(diǎn)評(píng) 本題考查棱柱的體積的計(jì)算方法,本題采用補(bǔ)圖形的方法,這樣可以降低運(yùn)算量,本題考查學(xué)生空間想象能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,已知cosA=$\frac{3}{5}$,cosB=$\frac{15}{17}$,則cosC等于( 。
A.-$\frac{13}{85}$B.$\frac{13}{85}$C.-$\frac{77}{85}$D.$\frac{77}{85}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知等比數(shù)列{an}的各項(xiàng)都為正數(shù),其前n和為Sn,且a1+a7=9,a4=2$\sqrt{2}$,則S6=7$\sqrt{2}$+7或7$\sqrt{2}$+14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.直三棱柱ABC-A1B1C1的各條棱長(zhǎng)均為2,E為棱CC1的中點(diǎn),則三棱錐A1-B1C1E的體積為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知△ABC,$AC=BC=\sqrt{2}a$,∠ACB=90°,過(guò)點(diǎn)A,B作線段AN,BM分別與△ABC所在的平面垂直,且AN=AB=2BM,E,F(xiàn),P分別是線段NC,AB,MC的中點(diǎn).
(Ⅰ)求證:EF∥平面MBC;
(Ⅱ)求異面直線AB與ME所成角的余弦值;
(Ⅲ)求四面體PBMF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在平面直角坐標(biāo)系中,直線l過(guò)點(diǎn)P(2,$\sqrt{3}$)且傾斜角為α,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=4cos(θ-$\frac{π}{3}$),直線l與曲線C相交于A,B兩點(diǎn);
(1)求曲線C的直角坐標(biāo)方程;
(2)若$|AB|=\sqrt{13}$,求直線l的傾斜角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.己知曲線C的極坐標(biāo)方程是ρ2-4ρcosθ-2psinθ=0.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系xOy.在平面直角坐標(biāo)系中,直線經(jīng)過(guò)點(diǎn)P(1,2),傾斜角為$\frac{π}{6}$.
(1)寫(xiě)出曲線C的直角坐標(biāo)方程和直線的參數(shù)方程;
(2)設(shè)直線與曲線C相交于A、B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在△ABC中,角A、B、C的對(duì)邊分別為a,b,c,且滿足(2a-b)cosC=c•cosB,△ABC的面積S=10$\sqrt{3},c=7$.
(1)求角C;   
(2)若a>b,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知:集合A={a,b,c},B={0,1,2},在映射f:A→B中,滿足f(a)>f(b)的映射有(  )個(gè).
A.27B.9C.3D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案