(12分)定義運(yùn)算 若函數(shù).
(1)求的解析式;
(2)畫出的圖像,并指出單調(diào)區(qū)間、值域以及奇偶性.

(1);(2) 上單調(diào)遞增, 在上單調(diào)遞減;值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/d0/1/gie7p4.png" style="vertical-align:middle;" />

解析試題分析:(1)根據(jù)表示取a與b中較小的可知只需比較的大小關(guān)系即可得到結(jié)論.(2)由分段函數(shù)與指數(shù)函數(shù)性質(zhì)畫出圖像,由圖像可得出單調(diào)區(qū)間、值域以及奇偶性.
試題解析:
(1)由,知
(2)的圖像如圖:

上單調(diào)遞增, 在上單調(diào)遞減
值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/d0/1/gie7p4.png" style="vertical-align:middle;" />
考點(diǎn):函數(shù)解析式的求解及常用方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)二次函數(shù),對(duì)任意實(shí)數(shù),有恒成立;數(shù)列滿足.
(1)求函數(shù)的解析式和值域;
(2)證明:當(dāng)時(shí),數(shù)列在該區(qū)間上是遞增數(shù)列;
(3)已知,是否存在非零整數(shù),使得對(duì)任意,都有
 恒成立,若存在,求之;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的定義域;
(2)若函數(shù)上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)若,是否存在、,使為偶函數(shù),如果存在,請(qǐng)舉例并證明你的結(jié)論,如果不存在,請(qǐng)說明理由;
(2)若,,求上的單調(diào)區(qū)間;
(3)已知,對(duì),,有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)為常數(shù))的圖象過原點(diǎn),且對(duì)任意總有成立;
(1)若的最大值等于1,求的解析式;
(2)試比較的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)若且對(duì)任意實(shí)數(shù)均有成立,求的表達(dá)式;
(Ⅱ)在(Ⅰ)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知奇函數(shù)

(1)求實(shí)數(shù)的值,并在給出的直角坐標(biāo)系中畫出的圖象;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,試確定實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)恒過定點(diǎn) (3,2).
(1)求實(shí)數(shù);
(2)在(1)的條件下,將函數(shù)的圖象向下平移1個(gè)單位,再向左平移個(gè)單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,求的解析式;
(3)對(duì)于定義在[1,9]的函數(shù),若在其定義域內(nèi),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(其中)的圖象如圖所示.

(1) 求函數(shù)的解析式;
(2) 設(shè)函數(shù),且,求的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案