設(shè)函數(shù)
(Ⅰ)若且對(duì)任意實(shí)數(shù)均有成立,求的表達(dá)式;
(Ⅱ)在(Ⅰ)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

(Ⅰ),(Ⅱ)

解析試題分析:(Ⅰ)根據(jù)得出a,b關(guān)系,再在定義域上恒成立,可得a,b的值,從而得出表達(dá)式.
(Ⅱ)由(Ⅰ)可推出表達(dá)式,又為單調(diào)函數(shù),利用二次函數(shù)性質(zhì)求得實(shí)數(shù)的取值范圍.
試題解析:(Ⅰ)恒成立,

從而      .(6分)
(Ⅱ)由(1)可知,
由于是單調(diào)函數(shù),
              .(12分)
考點(diǎn):二次函數(shù)求解析式,單調(diào)區(qū)間求參量.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知增函數(shù)是定義在(-1,1)上的奇函數(shù),其中,a為正整數(shù),且滿足.
⑴求函數(shù)的解析式;
⑵求滿足的范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d8/4/1qofq2.png" style="vertical-align:middle;" />(a為實(shí)數(shù)),
(1)當(dāng)時(shí),求函數(shù)的值域。
(2)若函數(shù)在定義域上是減函數(shù),求a的取值范圍
(3)求函數(shù)上的最大值及最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若函數(shù)為定義域上的單調(diào)函數(shù),且存在區(qū)間(其中,使得當(dāng)時(shí), 的取值范圍恰為,則稱函數(shù)上的正函數(shù),區(qū)間叫做函數(shù)的等域區(qū)間.
(1)已知上的正函數(shù),求的等域區(qū)間;
(2)試探求是否存在,使得函數(shù)上的正函數(shù)?若存在,請求出實(shí)數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)定義運(yùn)算 若函數(shù).
(1)求的解析式;
(2)畫出的圖像,并指出單調(diào)區(qū)間、值域以及奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a0/0/jkeym1.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(1)求的值
(2)判斷并證明的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

命題p:關(guān)于x的不等式,對(duì)一切恒成立;命題q:函是增函數(shù).若p或q為真,p且q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)當(dāng)時(shí),解不等式
(2)若函數(shù)有最大值,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義在上的偶函數(shù),且時(shí),,函數(shù)的值域?yàn)榧?img src="http://thumb.zyjl.cn/pic5/tikupic/c9/4/1dnnf2.png" style="vertical-align:middle;" />.
(I)求的值;
(II)設(shè)函數(shù)的定義域?yàn)榧?img src="http://thumb.zyjl.cn/pic5/tikupic/ad/d/1bpaa3.png" style="vertical-align:middle;" />,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案