已知橢圓的左、右焦點分別為F1、F2,點M是橢圓上的任意一點,且|PF1|+|PF2|=4,橢圓的離心率
(Ⅰ)求橢圓E的標準方程;
(Ⅱ)過橢圓E的左焦點F1作直線l交橢圓于P、Q兩點,點A為橢圓右頂點,能否存在這樣的直線,使,若存在,求出直線方程,若不存在,說明理由.
【答案】分析:(I)利用橢圓的定義、離心率計算公式及a2=b2+c2即可得出;
(II)先對直線l的斜率討論,把直線l的方程與橢圓的方程聯(lián)立,利用根與系數(shù)的關(guān)系及向量的數(shù)量積運算即可得出.
解答:解:(I)由題意可得,解得
故橢圓的方程為
(II)若直線l⊥x軸,則,
又A(2,0),∴=,,
,此時不滿足條件,直線l不存在.
當直線l的斜率存在時,設(shè)直線ld的方程為:y=k(x+1),P(x1,y1),Q(x2,y2).
聯(lián)立,消去y得到(3+4k2)x2+8k2x+4k2-12=0,

,
=(x1-2)(x2-2)+k(x1+1)•k(x2+1)=3.

,
解得
∴滿足條件的直線l存在,其方程為
點評:本題綜合考查了橢圓的定義、標準方程及其性質(zhì)、直線與橢圓的相交問題轉(zhuǎn)化為方程聯(lián)立及根與系數(shù)的關(guān)系、數(shù)量積等基礎(chǔ)知識與基本技能,考查了推理能力和計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的左、右焦點分別為F1,F(xiàn)2,橢圓的離心率為
1
2
且經(jīng)過點P(1,
3
2
)
.M為橢圓上的動點,以M為圓心,MF2為半徑作圓M.
(1)求橢圓C的標準方程;
(2)若圓M與y軸有兩個交點,求點M橫坐標的取值范圍;
(3)是否存在定圓N,使得圓N與圓M相切?若存在.求出圓N的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的左、右焦點分別為,其右準線上上存在點(點 軸上方),使為等腰三角形.

⑴求離心率的范圍;

    ⑵若橢圓上的點到兩焦點的距離之和為,求的內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省高三下學期假期檢測考試理科數(shù)學試卷 題型:解答題

已知橢圓的左、右焦點分別為,, 點是橢圓的一個頂點,△是等腰直角三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點分別作直線,交橢圓于兩點,設(shè)兩直線的斜率分別為,,且,證明:直線過定點().

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省三明市高三上學期三校聯(lián)考數(shù)學理卷 題型:解答題

(本題滿分14分)     已知橢圓的左、右焦點分別為F1、F2,其中

F2也是拋物線的焦點,M是C1與C2在第一象限的交點,且  

(I)求橢圓C1的方程;   (II)已知菱形ABCD的頂點A、C在橢圓C1上,頂點B、D在直線上,求直線AC的方程。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年云南省德宏州高三高考復(fù)習數(shù)學試卷 題型:解答題

(本小題滿分12分)

已知橢圓的左、右焦點分別為、,離心率,右準線方程為

(I)求橢圓的標準方程;

(II)過點的直線與該橢圓交于M、N兩點,且,求直線的方程.

 

查看答案和解析>>

同步練習冊答案