9.解關(guān)于x的不等式ax2+2x-1>0(a為常數(shù)).

分析 討論a的取值,求對(duì)應(yīng)不等式的解集即可.

解答 解:當(dāng)a=0時(shí),2x-1>0,解得x>$\frac{1}{2}$,
所以原不等式的解集為($\frac{1}{2}$,+∞);
當(dāng)a≠0時(shí),一元二次方程ax2+2x-1=0的判別式△=4+4a,
當(dāng)a≤-1時(shí),△≤0,原不等式的解集為∅;
當(dāng)a>0時(shí),方程ax2+2x-1=0的兩個(gè)實(shí)數(shù)根為x1=$\frac{-1+\sqrt{1+a}}{a}$,x2=$\frac{-1-\sqrt{1+a}}{a}$;
原不等式的解集為{x|x>$\frac{-1+\sqrt{1+a}}{a}$或x<$\frac{-1-\sqrt{1+a}}{a}$};
當(dāng)-1<a<0時(shí),x1<x2,
原不等式的解集為{x|$\frac{-1+\sqrt{1+a}}{a}$<x<$\frac{-1-\sqrt{1+a}}{a}$}.

點(diǎn)評(píng) 本題考查了含有字母系數(shù)的不等式的解法與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在矩形ABCD中,已知AB=2,AD=4,點(diǎn)E、F分別在AD、BC上,且AE=1,BF=3,將四邊形AEFB沿EF折起,使點(diǎn)B在平面CDEF上的射影H在直線DE上.
(1)求證:CD⊥BE;
(2)求線段BH的長(zhǎng)度;
(3)求直線AF與平面EFCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)f(x)=log2x+1的定義域?yàn)椋ā 。?table class="qanwser">A.(0,+∞)B.[0,+∞)C.(-1,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=BC=2,AD=CD=$\sqrt{7}$,PA=$\sqrt{3}$,∠ABC=120°,G為線段PC上的點(diǎn),
(1)證明:BD⊥平面PAC
(2)若G是PC的中點(diǎn),求DG與平面APC所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在一個(gè)盒子里裝有6張卡片,上面分別寫著如下定義域?yàn)镽的函數(shù):
f1(x)=x+1,f2(x)=x2,f3(x)=sinx,f4(x)=log2($\sqrt{{x^2}+1}$+x),f5(x)=cosx+|x|,f6(x)=xsinx-2.
(1)現(xiàn)在從盒子中任意取兩張卡片,記事件A為“這兩張卡片上函數(shù)相加,所得新函數(shù)是奇函數(shù)”,求事件A的概率;
(2)從盒中不放回逐一抽取卡片,若取到一張卡片上的函數(shù)是偶函數(shù)則停止抽取,否則繼續(xù)進(jìn)行,記停止時(shí)抽取次數(shù)為ξ,寫出ξ的分布列,并求其數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在下列圖形中,G、H、M、N分別是正三棱柱的頂點(diǎn)或所在棱的中點(diǎn),則表示直線GH、MN是異面直線的圖形有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=|2x-a|+a.
(1)若不等式f(x)≤6的解集為{x|-2≤x≤3},求實(shí)數(shù)a的值;
(2)在(1)的條件下,若存在實(shí)數(shù)n使f(n)≤m-f(-n)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.某學(xué)校要做一個(gè)18人的學(xué)生課外讀物調(diào)查,已知高一年級(jí)有600名,高二年級(jí)有800名,高三年級(jí)有400名,應(yīng)從高一,高二,高三分別抽取多少學(xué)生( 。
A.4,8,6B.6,8,4C.6,10,2D.8,4,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在直角坐標(biāo)系xOy中,長(zhǎng)為$\sqrt{2}$+1的線段的兩端點(diǎn)C,D分別在x軸、y軸上滑動(dòng),$\overrightarrow{CP}$=$\sqrt{2}$$\overrightarrow{PD}$.記點(diǎn)P的軌跡為曲線E.
(1)求曲線E的方程;
(2)直線l與曲線E交于A,B兩點(diǎn),線段AB的中點(diǎn)為M(${\frac{1}{2}$,1),求直線l方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案