已知α是第三象限的角,且f(α)=
sin(π-α)cos(2π-α)tan(-α+
3
2
π)•tan(-α-π)
sin(-α-π)

(1)化簡f(α);
(2)若cos(α-
3
2
π)=
1
5
,求f(α);
(3)若α=-
31
3
π,求f(α).
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:(1)f(α)解析式利用誘導(dǎo)公式化簡,約分即可得到結(jié)果;
(2)已知等式左邊利用誘導(dǎo)公式化簡,求出sinα的值,再利用同角三角函數(shù)間基本關(guān)系求出cosα的值,代入計(jì)算即可求出f(α)的值;
(3)將α代入計(jì)算即可求出f(α)的值.
解答: 解:(1)f(α)=
sinαcosαcotα(-tanα)
sinα
=-cosα;
(2)由cos(α-
3
2
π)=
1
5
,cos[-2π+(α+
π
2
)]=cos(α+
π
2
)=-sinα=
1
5
,
∴sinα=-
1
5

∵α為第三象限角,
∴cosα<0,
則f(α)=-cosα=
1-sin2α
=
1-
1
25
=
2
6
5
;
(3)若α=-
31π
3
,
∵-
31π
3
=-5×2π-
π
3
,
∴cos(-
31π
3
)=cos(-5×2π-
π
3
)=cos(-
π
3
)=cos
π
3
=
1
2
,
則f(α)=-cos(-
31π
3
)=-
1
2
點(diǎn)評(píng):此題考查了運(yùn)用誘導(dǎo)公式化簡求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=1,b=
ex-e-x
2
,c=
ex+e-x
2
(x>0,e=2.71828…)).
(1)求△ABC的最大角;
(2)試比較am+bm與cm(m∈R)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的前n項(xiàng)和為Sn,已知對(duì)任意的n∈N*,點(diǎn)(n,Sn)均在函數(shù)y=bn-1(b>0且b≠1)的圖象上.
(1)求通項(xiàng)公式an;
(2)當(dāng)b=2時(shí),記bn=
n+1
4an
(n∈N*)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知A(4,0)、B(0,4),從點(diǎn)P(2,0)射出的光線經(jīng)直線AB反射后再射到直線OB上,最后經(jīng)直線OB反射到P點(diǎn).求(1)光線所經(jīng)過的路程是多少;(2)直線AB關(guān)于直線2x-y-2=0的對(duì)稱直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x函數(shù)f(x)=cos2x-4acosx+2a其中0≤x≤
π
2

(1)將f(x)的最小值m表示成a的函數(shù)m=g(a);
(2)是否存在實(shí)數(shù)a,使f(x)>0在x∈[0,
π
2
]上恒成立?
(3)是否存在實(shí)數(shù)a,使函數(shù)f(x) 在x∈[0,
π
2
]上單調(diào)遞增?若存在,寫出所有的a組成的集合;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-bx2
+2x,x=2是f(x)的一個(gè)極值點(diǎn).
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈[-1,3]時(shí),求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,點(diǎn)A(-1,-2)、B(2,3)、C(-2,-1)
(1)求以線段AB、AC為鄰邊的平行四邊形兩條對(duì)角線的長;
(2)求向量
AB
在向量
AC
方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和為,且an是Sn和1的等差中項(xiàng),bn等差數(shù)列.滿足b1=a1,b4=S3
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=
1
bnbn+1
,數(shù)列{cn}的前n項(xiàng)和為Tn,若Tn≤λbn+1對(duì)一切n∈N*恒成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x-y≥0,x+y-2≤0,y≥-2,則z=3x+y的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案