(本題滿分10分) 已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,且過,設(shè)點.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程。
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
拋物線頂點在坐標原點,焦點與橢圓的右焦點重合,過點斜率為的直線與拋物線交于,兩點.
(Ⅰ)求拋物線的方程;
(Ⅱ)求△的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:+=1(a>b>0)的一個焦點是F(1,0),且離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)經(jīng)過點F的直線交橢圓C于M,N兩點,線段MN的垂直平分線交y軸于點P(0,y0),求y0的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知拋物線上橫坐標為4的點到焦點的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線與拋物線C交于兩點,,且(a為正常數(shù)).過弦AB的中點M作平行于x軸的直線交拋物線C于點D,連結(jié)AD、BD得到.
(i)求實數(shù)a,b,k滿足的等量關(guān)系;
(ii)的面積是否為定值?若為定值,求出此定值;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,它的準線經(jīng)過雙曲線:的左焦點且垂直于的兩個焦點所在的軸,若拋物線與雙曲線的一個交點是.
(1)求拋物線的方程及其焦點的坐標;
(2)求雙曲線的方程及其離心率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
已知中心在原點O,焦點在x軸上的橢圓E過點(1,),離心率為.
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線x+y+1=0與橢圓E相交于A、B(B在A上方)兩點,問是否存在直線l,使l與橢圓相交于C、D(C在D上方)兩點且ABCD為平行四邊形,若存在,求直線l的方程與平行四邊形ABCD的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某海域有、兩個島嶼,島在島正東4海里處。經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)現(xiàn)過魚群。以、所在直線為軸,的垂直平分線為軸建立平面直角坐標系。
(1)求曲線的標準方程;(6分)
(2)某日,研究人員在、兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),、兩島收到魚群在處反射信號的時間比為,問你能否確定處的位置(即點的坐標)?(8分)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題12分)
已知橢圓的右焦點為F,上頂點為A,P為C上任一點,MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
已知橢圓C:的上頂點坐標為,離心率為.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)P為橢圓上一點,A為左頂點,F(xiàn)為橢圓的右焦點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com