13.已知橢圓的焦點(diǎn)F1(0,-1),F(xiàn)2(0,1),P為橢圓上一動(dòng)點(diǎn),且|F1F2|是|PF1|與|PF2|的等差中項(xiàng),則橢圓的標(biāo)準(zhǔn)方程為(  )
A.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1C.x2+$\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{3}$+y2=1

分析 設(shè)橢圓方程:$\frac{{y}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),c=1,根據(jù)|F1F2|是|PF1|與|PF2|的等差中項(xiàng),可得2|F1F2|=|PF1|+|PF2|,且|F1F2|=2c,|PF1|+|PF2|=2a,就可求出a,b的值,再判斷焦點(diǎn)所在坐標(biāo)軸,就可得到橢圓方程.

解答 解:橢圓的焦點(diǎn)F1(0,-1),F(xiàn)2(0,1),橢圓的焦點(diǎn)在y軸上,設(shè)橢圓方程:$\frac{{y}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),c=1,
∵|F1F2|是|PF1|與|PF2|的等差中項(xiàng),
∴2|F1F2|=|PF1|+|PF2|,
∴2|F1F2|=|PF1|+|PF2|
又∵|F1F2|=2c,|PF1|+|PF2|=2a,∴4c=2a,a=2c
∴a=2,b2=a2-c2=3,
又∵橢圓的焦點(diǎn)在y軸上,
∴橢圓方程為$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{4}=1$.
故選B.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),考查等差數(shù)列的性質(zhì),考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.關(guān)于x的不等式2<log2(x+5)<3的整數(shù)解的集合為{0,1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知曲線C上的任意一點(diǎn)到點(diǎn)F(1,0)的距離與到直線x=-1的距離相等,直線l過(guò)點(diǎn)A(1,1),且與C交于P,Q兩點(diǎn);
(Ⅰ)求曲線C的方程;
(Ⅱ)若A為PQ的中點(diǎn),求三角形OPQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知直線L被兩平行直線L1:2x-5y+9=0與L2:2x-5y-7=0所截線段AB的中點(diǎn)恰在直線x-4y-1=0上,圓C:(x+4)2+(y-1)2=25.
(1)證明直線L與圓C恒有兩個(gè)交點(diǎn);
(2)當(dāng)直線L被圓C截得的弦最短時(shí),求出直線方程和最小弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.“x=1”是“(x-1)(x-2)=0”的( 。
A.必要但不充分條件B.充分但不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知冪函數(shù)$y={x}^{{p}^{2}-2p-3}$(p∈N*)的圖象關(guān)于y軸對(duì)稱(chēng),且在(0,+∞)上是減函數(shù),實(shí)數(shù)a滿(mǎn)足$({a}^{2}-1)^{\frac{p}{3}}<(3a+3)^{\frac{p}{3}}$,則a的取值范圍是(1,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2+4cosα}\\{y=2\sqrt{3}+4sinα}\end{array}\right.$(α是參數(shù)).以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C1的極坐標(biāo)方程;
(Ⅱ)已知直線C2傾斜角為α,且過(guò)點(diǎn)(2,$\sqrt{3}$),若曲線C1與直線C2交于M,N兩點(diǎn),求|MN|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.甲、乙兩位射擊運(yùn)動(dòng)員,在某天訓(xùn)練中已各射擊10次,每次命中的環(huán)數(shù)如下:
甲    7  8  7  9  5  4  9  10  7  4
乙    9  5  7  8  7  6  8  6   7  7
(Ⅰ)通過(guò)計(jì)算估計(jì),甲、乙二人的射擊成績(jī)誰(shuí)更穩(wěn);
(Ⅱ)若規(guī)定命中8環(huán)及以上環(huán)數(shù)為優(yōu)秀,請(qǐng)依據(jù)上述數(shù)據(jù)估計(jì),在第11次射擊時(shí),甲、乙兩人分
別獲得優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.A公司有職工代表40人,B公司有職工代表60人,用分層抽樣的方法在這兩個(gè)公司的職工代表中選取10人,則A公司應(yīng)該選取4人.

查看答案和解析>>

同步練習(xí)冊(cè)答案