以下莖葉圖記錄了甲、乙兩組各四名同學的植樹棵數(shù).乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以X表示.

(1)如果X=8,求乙組同學植樹棵數(shù)的平均數(shù)和方差;
(2)如果X=9,分別從甲、乙兩組中隨機選取一名同學,求這兩名同學的植樹總棵數(shù)Y的分布列和數(shù)學期望.(注:方差s2 [(x1)2+(x2)2+…+(xn)2],其中x1x2,…,xn的平均數(shù))

(1)(2)19

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某市準備從5名報名者(其中男3人,女2人)中選2人參加兩個副局長職務競選。
(1)求所選2人均為女副局長的概率;
(2)若選派兩個副局長依次到A、B兩個局上任,求A局是男副局長的情況下,B局是女副局長的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設袋子中裝有a個紅球,b個黃球,c個藍球,且規(guī)定:取出一個紅球得1分,取出一個黃球得2分,取出一個藍球得3分.
(1)當a=3,b=2,c=1時,從該袋子中任取(有放回,且每球取到的機會均等)2個球,記隨機變量ξ為取出此2球所得分數(shù)之和,求ξ的分布列;
(2)從該袋子中任取(每球取到的機會均等)1個球,記隨機變量η為取出此球所得分數(shù).若E(η)=,D(η)=,求abc.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙、丙三人進行乒乓球練習賽,其中兩人比賽,另一人當裁判,每局比賽結(jié)束時,負的一方在下一局當裁判.設各局中雙方獲勝的概率均為,各局比賽的結(jié)果相互獨立,第1局甲當裁判.
(1)求第4局甲當裁判的概率;
(2)用X表示前4局中乙當裁判的次數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某牛奶廠要將一批牛奶用汽車從所在城市甲運至城市乙,已知從城市甲到城市乙只有兩條公路,且運費由廠商承擔.若廠商恰能在約定日期(×月×日)將牛奶送到,則城市乙的銷售商一次性支付給牛奶廠20萬元;若在約定日期前送到,每提前一天銷售商將多支付給牛奶廠1萬元;若在約定日期后送到,每遲到一天銷售商將少支付給牛奶廠1萬元.為保證牛奶新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運送牛奶,已知下表內(nèi)的信息:

統(tǒng)計信息
汽車行駛路線
在不堵車的情況下到達城市乙所需時間(天)
在堵車的情況下到達城市乙所需時間(天)
堵車的概率
運費(萬元)
公路1
2
3

1.6
公路2
1
4

0.8
(I)記汽車選擇公路1運送牛奶時牛奶廠獲得的毛收入為(單位:萬元),求的分布列和數(shù)學期望;
(II)如果你是牛奶廠的決策者,你選擇哪條公路運送牛奶有可能讓牛奶廠獲得的毛收入更多?
(注:毛收入=銷售商支付給牛奶廠的費用-運費)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某市四所中學報名參加某高校今年自主招生的學生人數(shù)如下表所示:

中學
 
 
 
 
人數(shù)
 
 
 
 
為了了解參加考試的學生的學習狀況,該高校采用分層抽樣的方法從報名參加考試的四所中學的學生當中隨機抽取50名參加問卷調(diào)查.
(1)問四所中學各抽取多少名學生?
(2)從參加問卷調(diào)查的名學生中隨機抽取兩名學生,求這兩名學生自同一所中學的概率;
(3)在參加問卷調(diào)查的名學生中,從自兩所中學的學生當中隨機抽取兩名學
生,用表示抽得中學的學生人數(shù),求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某中學經(jīng)市批準建設分校,工程從2010年底開工到2013年底完工,分三期完成,經(jīng)過初步招標淘汰后,確定由甲、乙兩建筑公司承建,且每期工程由兩公司之一獨立完成,必須在建完前一期工程后再建后一期工程,已知甲公司獲得第一期,第二期,第三期工程承包權的概率分別是,,
(I)求甲乙兩公司均至少獲得l期工程的概率;
(II)求甲公司獲得的工程期數(shù)的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在某校高三學生的數(shù)學校本課程選課過程中,規(guī)定每位同學只能選一個科目.已知某班第一小組與第二小組各有六位同學選擇科目甲或科目乙,情況如下表:

 
科目甲
科目乙
總計
第一小組
1
5
6
第二小組
2
4
6
總計
3
9
12
現(xiàn)從第一小組、第二小組中各任選2人分析選課情況.
(1)求選出的4人均選科目乙的概率;
(2)設為選出的4個人中選科目甲的人數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為貫徹“激情工作,快樂生活”的理念,某單位在工作之余舉行趣味知識有獎競賽,比賽分初賽和決賽兩部分.為了增加節(jié)目的趣味性,初賽采用選手選一題答一題的方式進行,每位選手最多有5次選題答題的機會,選手累計答對3題或答錯3題即終止其初賽的比賽,答對3題者直接進入決賽,答錯3題者則被淘汰.已知選手甲答題的正確率為.
(1)求選手甲答題次數(shù)不超過4次可進入決賽的概率;
(2)設選手甲在初賽中答題的個數(shù)為X,試寫出X的分布列,并求X的數(shù)學期望.

查看答案和解析>>

同步練習冊答案