對于區(qū)間[m,n]上有意義的兩個(gè)函數(shù)f(x)與?g(x),如果對任意的x∈[m,n],均有|f(x)-g(x)|≤1,則稱f(x)與g(x)在[m,n]上是接近的.否則稱f(x)與g(x)在[m,n]上是非接近的.現(xiàn)有兩個(gè)函數(shù)f1(x)=loga(x-3a)與f2(x)=loga(a>0且a≠1),給定區(qū)間[a+2,a+3].

(1)若f1(x)與f2(x)在給定區(qū)間[a+2,a+3]上都有意義,求a的取值范圍;

(2)討論f1(x)與f2(x)在給定區(qū)間[a+2,a+3]上是否接近的.

解析:(1)由得0<a<1.

(2)|f1(x)-f2(x)|=|loga[(x-3a)?(x-a)]|,

令|f1(x)-f2(x)|≤1,

得-1≤loga[(x-3a)(x-a)]≤1.(*)

因?yàn)?<a<1,所以[a+2,a+3]在直線x=2a的右側(cè).

所以g(x)=loga[(x-3a)(x-a)]在[a+2,a+3]上為減函數(shù).

所以g(x)min=g(a+3)=loga(9-6a),

g(x)max=g(a+2)=loga(4-4a).

于是(*)成立的充要條件是

∴0<a<.

所以當(dāng)a∈(0,)時(shí),f1(x)與?f2(x)是接近的;在a∈(,1)∪(1,?+∞)上是非接近的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-ax-2

(1)若a∈N*,且函數(shù)f(x)在區(qū)間(2,+∞)上是減函數(shù),求a的值;
(2)若a∈R,且關(guān)于x的方程f(x)=-x有且只有一根落在區(qū)間(-2,-1)內(nèi),求a的取值范圍;
(3)在(1)的條件下,若對于區(qū)間[3,4]上的每一個(gè)x的值,不等式f(x)>m-x-3恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于在區(qū)間[a,b]上有意義的兩個(gè)函數(shù)m(x)與n(x),如果對于區(qū)間[a,b]中的任意x均有|m(x)-n(x)|≤1,則稱m(x)與n(x)在[a,b]上是“密切函數(shù)”,[a,b]稱為“密切區(qū)間”,若函數(shù)m(x)=x2-3x+4與n(x)=2x-3在區(qū)間[a,b]上是“密切函數(shù)”,則密切區(qū)間為
[2,3]
[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對于區(qū)間[m,n]上有意義的兩個(gè)函數(shù)f(x)與g(x),如果對任意的x∈[m,n],均有|f(x)-g(x)|≤1,則稱f(x)與g(x)在[m,n]上是接近的,否則稱f(x)與g(x)在[m,n]上是非接近的 .現(xiàn)有兩個(gè)函數(shù)f1(x)=loga(x-3a)與f2(x)=loga(a>0,a≠1),給定區(qū)間[a+2,a+3].

(1)若f1(x)與f2(x)在給定區(qū)間[a+2,a+3]上都有意義,求a的取值范圍;

(2)討論f1(x)與f2(x)在給定區(qū)間[a+2,a+3]上是否是接近的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于區(qū)間[a,b]上有意義的兩個(gè)函數(shù)m(x)與n(x),對于區(qū)間[a,b]中的任意x均有|m(x)-n(x)|≤1,則稱函數(shù)m(x)與n(x)在區(qū)間[a,b]上是密切函數(shù),[a,b]稱為密切區(qū)間.若m(x)=x2-3x+4與n(x)=2x-3在區(qū)間上是“密切函數(shù)”,則密切區(qū)間是

A.[3,4]           B.[2,4]             C.[2,3]           D.[1,4]

查看答案和解析>>

同步練習(xí)冊答案