動圓M過定點A(-,0),且與定圓A´:(x-)2+y2=12相切.
(1)求動圓圓心M的軌跡C的方程;
(2)過點P(0,2)的直線l與軌跡C交于不同的兩點E、F,求的取值范圍.
(1)
(2)
【解析】
試題分析:解:(1)A´(,0),依題意有|MA´|+=2 1分
|MA´|+|MA|=2 >2 3分
∴點M的軌跡是以A´、A為焦點,2為長軸上的橢圓, 4分
∵a=,c= ∴b2=1. 5分
因此點M的軌跡方程為 6分
(2)設l的方程為x=k(y-2)代入,消去x得:
(k2+3)y2-4k2y+4k2-3=0 8分
由△>0得16k4-(4k2-3)(k2+3)>0 0≤k2<1 9分
設E(x1,y1),F(xiàn)(x2,y2),則y1+y2=,y1y2= 10分
又=(x1,y1-2),=(x2,y2-2)
∴·=x1x2+(y1-2)(y2-2)=k(y1-2)·k (y2-2) +(y1-2)(y2-2)=(1+k2)= 12分
∵0≤k2<1 ∴3≤k2+3<4 13分
∴·∈ 14分
考點:向量的數(shù)量積以及直線與橢圓的位置關系
點評:主要是考查了橢圓方程,直線與橢圓的位置關系的運用,屬于基礎題。
科目:高中數(shù)學 來源: 題型:
2 |
2 |
PE |
PF |
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年山東省德州市高三12月月考理科數(shù)學試卷(解析版) 題型:解答題
動圓M過定點A(-,0),且與定圓A´:(x-)2+y2=12相切.
(1)求動圓圓心M的軌跡C的方程;
(2)過點P(0,2)的直線l與軌跡C交于不同的兩點E、F,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年山東省德州市某中學高三(上)12月月考數(shù)學試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com