【題目】為了豎一塊廣告牌,要制造三角形支架,如圖,要求∠ACB=60°,BC的長(zhǎng)度大于1米,且AC比AB長(zhǎng)0.5米,為了穩(wěn)固廣告牌,要求AC越短越好,則AC最短為( 。
A.(1+ )米
B.2米
C.(1+ )米
D.(2+ )米
【答案】D
【解析】解:設(shè)BC的長(zhǎng)度為x米,AC的長(zhǎng)度為y米,則AB的長(zhǎng)度為(y﹣0.5)米,在△ABC中,依余弦定理得:AB2=AC2+BC2﹣2ACBCcos∠ACB,
即(y﹣0.5)2=y2+x2﹣2yx× ,化簡(jiǎn),得y(x﹣1)=x2﹣ ,
∵x>1,
∴x﹣1>0,
因此y= ,
y=(x﹣1)+ +2≥ +2,
當(dāng)且僅當(dāng)x﹣1= 時(shí),取“=”號(hào),
即x=1+ 時(shí),y有最小值2+ .
故答案為:D.
先根據(jù)余弦定理求得BC的長(zhǎng)度為x與AC的長(zhǎng)度為y的關(guān)系式,再結(jié)合x的取值范圍及基本不等式求得y的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4cosωxsin(ωx+ )+a(ω>0)圖象上最高點(diǎn)的縱坐標(biāo)為2,且圖象上相鄰兩個(gè)最高點(diǎn)的距離為π.
(Ⅰ)求a和ω的值;
(Ⅱ)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a2=1,|an+1﹣an|= ,若a2n+1>a2n﹣1 , a2n+2<a2n(n∈N+)則數(shù)列{(﹣1)nan}的前40項(xiàng)的和為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( 。
A.命題“x∈R,使得x2+x+1<0”的否定是:“x∈R,x2+x+1>0”
B.命題“若x2﹣3x+2=0,則x=1或x=2”的否命題是:“若x2﹣3x+2=0,則x≠1或x≠2”
C.直線l1:2ax+y+1=0,l2:x+2ay+2=0,l1∥l2的充要條件是
D.命題“若x=y,則sinx=siny”的逆否命題是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】來(lái)自某校一班和二班的共計(jì)9名學(xué)生志愿服務(wù)者被隨機(jī)平均分配到運(yùn)送礦泉水、清掃衛(wèi)生、維持秩序這三個(gè)崗位服務(wù),且運(yùn)送礦泉水崗位至少有一名一班志愿者的概率是 .
(1)求清掃衛(wèi)生崗位恰好一班1人、二班2人的概率;
(2)設(shè)隨機(jī)變量X為在維持秩序崗位服務(wù)的一班的志愿者的人數(shù),求X分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉行“慶元旦”教工羽毛球單循環(huán)比賽(任意兩個(gè)參賽隊(duì)只比賽一場(chǎng)),共有高一、高二、高三三個(gè)隊(duì)參賽,高一勝高二的概率為 ,高一勝高三的概率為 ,高二勝高三的概率為P,每場(chǎng)勝負(fù)獨(dú)立,勝者記1分,負(fù)者記0分,規(guī)定:積分相同者高年級(jí)獲勝.
(Ⅰ)若高三獲得冠軍概率為 ,求P.
(Ⅱ)記高三的得分為X,求X的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PC⊥平面ABCD,AB∥CD,CD⊥AC,過(guò)CD的平面分別與PA,PB交于點(diǎn)E,F(xiàn).
(1)求證:CD⊥平面PAC;
(2)求證:AB∥EF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx+ax2(a∈R),y=f(x)的圖象連續(xù)不間斷.
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),設(shè)l是曲線y=f(x)的一條切線,切點(diǎn)是A,且l在點(diǎn)A處穿過(guò)函數(shù)y=f(x)的圖象(即動(dòng)點(diǎn)在點(diǎn)A附近沿曲線y=f(x)運(yùn)動(dòng),經(jīng)過(guò)點(diǎn)A時(shí),從l的一側(cè)進(jìn)入另一側(cè)),求切線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,圓C1:x2+y2=1經(jīng)過(guò)伸縮變換 后得到曲線C2以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長(zhǎng)度,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為cosθ+2sinθ=
(1)求曲線C2的直角坐標(biāo)方程及直線l的直角坐標(biāo)方程;
(2)在C2上求一點(diǎn)M,使點(diǎn)M到直線l的距離最小,并求出最小距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com