【題目】在平面直角坐標系xOy中,已知圓O:x2+y2=4,直線l:12x-5y+c=0(其中c為常數).下列有關直線l與圓O的命題中正確命題的序號是________.
①當c=0時,圓O上有四個不同的點到直線l的距離為1;
②若圓O上有四個不同的點到直線l的距離為1,則-13<c<13;
③若圓O上恰有三個不同的點到直線l的距離為1,則c=13;
④若圓O上恰有兩個不同的點到直線l的距離為1,則13<c<39;
⑤當c=±39時,圓O上只有一個點到直線l的距離為1.
科目:高中數學 來源: 題型:
【題目】設AB=6,在線段AB上任取兩點C、D(端點A、B除外),將線段AB分成三條線段AC、CD、DB.
(1)若分成的三條線段的長度均為正整數,求這三條線段可以構成三角形(稱為事件A)的概率;
(2)若分成的三條線段的長度均為正實數,求這三條線段可以構成三角形(稱為事件B)的概率;
(3)根據以下用計算機所產生的20組隨機數,試用隨機數模擬的方法,來近似計算(2)中事件B的概率, 20組隨機數如下:
組別 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
X | 0.52 | 0.36 | 0.58 | 0.73 | 0.41 | 0.6 | 0.05 | 0.32 | 0.38 | 0.73 |
Y | 0.76 | 0.39 | 0.37 | 0.01 | 0.04 | 0.28 | 0.03 | 0.15 | 0.14 | 0.86 |
組別 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
X | 0.67 | 0.47 | 0.58 | 0.21 | 0.54 | 0.64 | 0.36 | 0.35 | 0.95 | 0.14 |
Y | 0.41 | 0.54 | 0.51 | 0.37 | 0.31 | 0.23 | 0.56 | 0.89 | 0.17 | 0.03> |
(X和Y都是0~1之間的均勻隨機數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若m個不全相等的正數a1 , a2 , …am依次圍成一個圓圈使每個ak(1≤k≤m,k∈N)都是其左右相鄰兩個數平方的等比中項,則正整數m的最小值是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩個同學進行定點投籃游戲,已知他們每一次投籃投中的概率均為,且各次投籃的結果互不影響.甲同學決定投5次,乙同學決定投中1次就停止,否則就繼續(xù)投下去,但投籃次數不超過5次.
(1)求甲同學至少有4次投中的概率;
(2)求乙同學投籃次數的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為選拔參加“央視猜燈謎大賽”的隊員,在校內組織猜燈謎競賽.規(guī)定:第一階段知識測試成績不小于分的學生進入第二階段比賽.現有名學生參加知識測試,并將所有測試成績繪制成如下所示的頻率分布直方圖.
(1)估算這名學生測試成績的中位數,并求進入第二階段比賽的學生人數;
(2)將進入第二階段的學生分成若干隊進行比賽.現甲、乙兩隊在比賽中均已獲得分,進入最后強答階段.搶答規(guī)則:搶到的隊每次需猜條謎語,猜對條得分,猜錯條扣分.根據經驗,甲隊猜對每條謎語的概率均為,乙隊猜對每條謎語的概率均為,猜對第條的概率均為.若這兩條搶到答題的機會均等,您做為場外觀眾想支持這兩隊中的優(yōu)勝隊,會把支持票投給哪隊?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】當今信息時代,眾多高中生也配上了手機.某校為研究經常使用手機是否對學習成績有影響,隨機抽取高三年級50名理科生的一次數學周練成績,用莖葉圖表示如下圖:
(1)根據莖葉圖中的數據完成下面的列聯(lián)表,并判斷是否有95%的把握認為經常使用手機對學習成績有影響?
及格() | 不及格 | 合計 | |
很少使用手機 | |||
經常使用手機 | |||
合計 |
(2)從50人中,選取一名很少使用手機的同學記為甲和一名經常使用手機的同學記為乙,解一道數列題,甲、乙獨立解決此題的概率分別為, , ,若,則此二人適合結為學習上互幫互助的“師徒”,記為兩人中解決此題的人數,若,問兩人是否適合結為“師徒”?
參考公式及數據: ,其中.
<>0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4—4:坐標系與參數方程
在平面直角坐標系中曲線經伸縮變換后得到曲線,在以為極點, 軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.
(1)求曲線的參數方程和的直角坐標方程;
(2)設為曲線上的一點,又向曲線引切線,切點為,求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 =(cosα,sinα), =(cosβ,sinβ),其中0<α<β<π.
(1)求證: 與 互相垂直;
(2)若k 與 ﹣k 的長度相等,求β﹣α的值(k為非零的常數).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com