【題目】已知函數(shù)f(x)=x(lnxax)有兩個極值點,則實數(shù)a的取值范圍是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

【答案】B

【解析】函數(shù)fx=xlnx﹣ax),則f′x=lnx﹣ax+x﹣a=lnx﹣2ax+1,

f′x=lnx﹣2ax+1=0lnx=2ax﹣1,

函數(shù)fx=xlnx﹣ax)有兩個極值點,等價于f′x=lnx﹣2ax+1有兩個零點,

等價于函數(shù)y=lnxy=2ax﹣1的圖象有兩個交點,

在同一個坐標系中作出它們的圖象(如圖)

a=時,直線y=2ax﹣1y=lnx的圖象相切,

由圖可知,當0a時,y=lnxy=2ax﹣1的圖象有兩個交點.

則實數(shù)a的取值范圍是(0,).

故選B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)處有極大值,則常數(shù)為( )

A. 2或6 B. 2 C. 6 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形所在的平面與直角梯形所在的平面成的二面角,,,,.

1)求證:;

2)在線段上求一點,使銳二面角的余弦值為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在的奇函數(shù)滿足:①;②對任意均有;③對任意,均有.

1)求的值;

2)利用定義法證明上單調遞減;

3)若對任意,恒有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在同一直角坐標系中,經過伸縮變換后,曲線C的方程變?yōu)?/span>.以坐標原點為極點,x軸正半軸為極軸建立極坐標系,直線/的極坐標方程為.

1)求曲線C和直線l的直角坐標方程;

2)過點l的垂線l0CA,B兩點,點Ax軸上方,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,則關于的方程給出下列五個命題①存在實數(shù),使得該方程沒有實根;

②存在實數(shù),使得該方程恰有個實根;

③存在實數(shù)使得該方程恰有個不同實根;

④存在實數(shù),使得該方程恰有個不同實根

⑤存在實數(shù),使得該方程恰有個不同實根

其中正確的命題的個數(shù)是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在黃陵中學舉行的數(shù)學知識競賽中,將高二兩個班參賽的學生成績(得分均為整數(shù))進行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是0.30,0.15,0.10,0.05,第二小組的頻數(shù)是40.

(1)求第二小組的頻率;

(2)求這兩個班參賽的學生人數(shù)是多少?

(3)這兩個班參賽學生的成績的中位數(shù)應落在第幾小組內?(不必說明理由)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知下表為函數(shù)部分自変量取值及其對應函數(shù)值,為了便于研究,相關函數(shù)值取非整數(shù)值時,取值精確到0.01.

0.61

-0.59

-0.56

-0.35

0

0.26

0.42

1.57

3.27

0.07

0.02

-0.03

-0.22

0

0.21

0.20

-10.04

-101.63

據表中數(shù)據,研究該函數(shù)的一些性質;

(1)判斷函數(shù)的奇偶性,并證明;

(2)判斷函數(shù)在區(qū)間[0.55,0.6]上是否存在零點,并說明理由;

(3)判斷的正負,并證明函數(shù)上是單調遞減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,討論函數(shù)的單調性;

2)當時,對于任意正實數(shù),不等式恒成立,試判斷實數(shù)的大小關系.

查看答案和解析>>

同步練習冊答案