命題“?x0∈R,使得x02+2x0-8=0”的否定是( 。
A、對?x∈R,都有x2+2x-8=0B、不存在x∈R,使得x2+2x-8≠0C、對?x∈R,都有x2+2x-8≠0D、?x0∈R得x02+2x0-8≠0
分析:根據(jù)特稱命題的否定是全稱命題即可得到結(jié)論.
解答:解:∵特稱命題的否定的全稱命題,
∴命題“?x0∈R,使得x02+2x0-8=0”的否定是:對?x∈R,都有x2+2x-8≠0,
故選:C.
點評:本題主要考查含有量詞的命題的否定,特稱命題的否定是全稱命題,全稱命題的否定是特稱命題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x0∈R,使log2x0≤0成立”的否定為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定下列命題:
①“x>1”是“x>2”的充分不必要條件;   
②若sina
1
2
,則a≠
π
6
;
③若xy=0,則x=0且y=0的逆命題  
④命題?x0∈R,使
x
2
0
-x0+1≤0
 的否定.
其中真命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x0∈R,使x2+ax+1<0”的否定是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題“?x0∈R,使(a+1)x02+4x0+1<0”是真命題,則實數(shù)a的取值范圍為
(-∞,3)
(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題“?x0∈R,使ax02+x0-1>0”是假命題,則實數(shù)a的取值范圍是( 。
A、a<-
1
4
B、a>-
1
4
C、a≥-
1
4
D、a≤-
1
4

查看答案和解析>>

同步練習(xí)冊答案