分析 由條件利用余弦函數(shù)的圖象的對(duì)稱(chēng)性可得$\frac{π}{3}$+φ=kπ,由此求得φ的最小正值.
解答 解:∵函數(shù)y=3cos(x+φ)-1的圖象關(guān)于直線(xiàn)x=$\frac{π}{3}$對(duì)稱(chēng),其中φ∈[0,π],
∴$\frac{π}{3}$+φ=kπ,即φ=kπ-$\frac{π}{3}$,k∈Z,
則φ的最小正值為$\frac{2π}{3}$,
故答案為:$\frac{2π}{3}$.
點(diǎn)評(píng) 本題主要余弦函數(shù)的圖象的對(duì)稱(chēng)性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -x-1 | B. | x+1 | C. | -x+1 | D. | x-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{9}$ | B. | ±$\frac{5}{9}$ | C. | -$\frac{5}{9}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=x2-4x | B. | g(x)=3x+1 | C. | h(x)=3-x | D. | t(x)=tanx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com