A. | $[{\frac{π}{6},\frac{5π}{12}}]$ | B. | $[{\frac{5π}{12},π}]$ | C. | $[{\frac{π}{4},π}]$ | D. | $[{\frac{π}{4},\frac{2π}{3}}]$ |
分析 求解出函數(shù)$f(x)=\sqrt{3}sin2x-cos2x$的單調(diào)增區(qū)間,根據(jù)在區(qū)間$[{0,\frac{a}{3}}]$和$[{2a,\frac{4π}{3}}]$上均單調(diào)遞增建立關(guān)系可得答案.
解答 解:由函數(shù)$f(x)=\sqrt{3}sin2x-cos2x$=2sin(2x-$\frac{π}{6}$),
令$-\frac{π}{2}+2kπ≤$2x-$\frac{π}{6}$$≤\frac{π}{2}+2kπ$
得:$-\frac{π}{6}+kπ$≤x≤$\frac{π}{3}+kπ$,k∈Z.
當(dāng)k=0時(shí),可得增區(qū)間為[$-\frac{π}{6}$,$\frac{π}{3}$],
∵在區(qū)間$[{0,\frac{a}{3}}]$和$[{2a,\frac{4π}{3}}]$上均單調(diào)遞增
則$\frac{a}{3}≤\frac{π}{3}$,
∴0<a≤π.
當(dāng)k=1時(shí),可得增區(qū)間為[$\frac{5π}{6}$,$\frac{4π}{3}$],
則2a$≥\frac{5π}{6}$,
∴a$≥\frac{5π}{12}$.
綜上可得:π≥a$≥\frac{5π}{12}$.
故選B
點(diǎn)評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2} | B. | {3,4} | C. | {1} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 13.59% | B. | 15.73% | C. | 27.18% | D. | 31.46% |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com