13.如圖所示,已知|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=$\sqrt{3}$,$\overrightarrow{OA}•\overrightarrow{OB}$=0,點(diǎn)C在線段AB上,且∠AOC=30°,設(shè)$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),則m-n等于( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{1}{3}$

分析 根據(jù)條件便可得出△AOB為Rt△,且∠AOB=90°,從而在Rt△AOB中,可求出∠OAB=60°,進(jìn)而便得到$\overrightarrow{OC}⊥\overrightarrow{AB}$,從而$\overrightarrow{OC}•\overrightarrow{AB}=0$,帶入$\overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB},\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}$進(jìn)行數(shù)量積的運(yùn)算便可得到3n-m=0.而由條件容易得出m+n=1,這兩式聯(lián)立即可解出m,n,從而便可求出m-n的值.

解答 解:∵$\overrightarrow{OA}•\overrightarrow{OB}=0$;
∴$\overrightarrow{OA}⊥\overrightarrow{OB}$;
∴∠AOB=90°,且$|\overrightarrow{OA}|=1,|\overrightarrow{OB}|=\sqrt{3}$;
∴$|\overrightarrow{AB}|=2$;
∴$cos∠OAB=\frac{\sqrt{3}}{2}$;
∴∠OAB=60°;
又∠AOC=30°;
∴∠OCA=90°;
即$\overrightarrow{OC}⊥\overrightarrow{AB}$;
∴$\overrightarrow{OC}•\overrightarrow{AB}=\overrightarrow{OC}•(\overrightarrow{OB}-\overrightarrow{OA})$
=$(m\overrightarrow{OA}+n\overrightarrow{OB})•(\overrightarrow{OB}-\overrightarrow{OA})$
=$m\overrightarrow{OA}•\overrightarrow{OB}-m{\overrightarrow{OA}}^{2}+n{\overrightarrow{OB}}^{2}-n\overrightarrow{OA}•\overrightarrow{OB}$
=0-m+3n-0
=0;
即3n-m=0①;
∵$\overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB}$,且A,C,B三點(diǎn)共線;
∴m+n=1②;
∴①②聯(lián)立得,$m=\frac{3}{4},n=\frac{1}{4}$;
∴$m-n=\frac{1}{2}$.
故選:B.

點(diǎn)評 考查向量垂直的充要條件,三角函數(shù)的定義,已知三角函數(shù)值求角,向量減法的幾何意義,以及向量數(shù)量積的運(yùn)算及計(jì)算公式,三點(diǎn)A,B,C共線的充要條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=alnx+x2+bx(a為實(shí)常數(shù)).
(Ⅰ)若a=-2,b=-3,求證:f(x)在(e,+∞)上為單調(diào)增函數(shù);
(Ⅱ)若b=0,且a>-2e2,求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;
(Ⅲ)設(shè)b=0,若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某中學(xué)舉行電腦知識(shí)競賽,現(xiàn)將高一參賽學(xué)生的成績進(jìn)行整理后分成五組繪制成如圖所示的頻率分布直方圖,已知圖中從左到右的第一、二、三、四、五小組的頻率分別是0.30、0.40、0.15、0.10、0.05.求:
(1)高一參賽學(xué)生的成績的眾數(shù)、中位數(shù).
(2)高一參賽學(xué)生的平均成績.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)在x=x0處導(dǎo)數(shù)存在,若p:x=x0是f(x)的極值點(diǎn),;q:f′(x0)=0,則p是q的( 。l件.
A.充分且必要條件
B.充分不必要條件
C.必要不充分條件
D.既不是的充分條件也不是的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f(x)=asinx+cosx,若f($\frac{π}{4}$+x)=f($\frac{π}{4}$-x),則f(x)的最大值為( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.求y=$\sqrt{1+x}$+2$\sqrt{1-x}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知扇形的半徑為2cm,扇形圓心角θ的弧度數(shù)是2,則扇形的弧長為( 。
A.2cmB.4cmC.6cmD.8cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥2}\\{x-2y+4≥0}\\{2x-y-4≤0}\end{array}\right.$,若z=kx+y的最大值為13,則實(shí)數(shù)k=$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如表資料:
日期12月1日12月2日12月3日12月4日12月5日
溫差x/℃101113128
發(fā)芽數(shù)y/顆2325302616
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的2組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并判斷該線性回歸方程是否可靠(若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的);
參數(shù)公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

同步練習(xí)冊答案