精英家教網 > 高中數學 > 題目詳情
2.實數x,y滿足$\left\{\begin{array}{l}{x≥2}\\{x-2y+4≥0}\\{2x-y-4≤0}\end{array}\right.$,若z=kx+y的最大值為13,則實數k=$\frac{9}{4}$.

分析 作出不等式組對應的平面區(qū)域,利用目標函數的幾何意義,利用數形結合即可得到結論.

解答 解:作出不等式組對應的平面區(qū)域如圖:
由z=kx+y得y=-kx+z,∴直線的截距最大,對應的z也取得最大值,
即平面區(qū)域在直線y=-kx+z的下方,且-k<0
平移直線y=-kx+z,由圖象可知當直線y=-kx+z經過點A時,直線y=-kx+z的截距最大,此時z最大為13,
即kx+y=13
由$\left\{\begin{array}{l}{x-2y+4=0}\\{2x-y-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=4}\end{array}\right.$,
即A(4,4),
此時4k+4=13,解得k=$\frac{9}{4}$,
故答案為:$\frac{9}{4}$.

點評 本題主要考查線性規(guī)劃的應用,利用z的幾何意義,結合數形結合是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

12.某田徑隊有男運動員42人,女運動員30人,用分層抽樣的方法從全體運動員中抽取一個容量為n的樣本.若抽到的女運動員有5人,則n的值為(  )
A.5B.7C.12D.18

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.如圖所示,已知|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=$\sqrt{3}$,$\overrightarrow{OA}•\overrightarrow{OB}$=0,點C在線段AB上,且∠AOC=30°,設$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),則m-n等于( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.已知關于x的方程2x2-($\sqrt{3}$+1)x+2m=0的兩根為sinθ和cosθ(θ∈(0,π)),求:
(1)m的值.
(2)$\frac{sinθ}{1-cotθ}+\frac{cosθ}{1-tanθ}$的值(其中cotθ=$\frac{1}{tanθ}$).
(3)方程的兩根及此時θ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知全集U={2,3,5,7,9},A={2,|a-5|,7},CUA={5,9},則a的值為( 。
A.2B.8C.2或8D.-2或8

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.(1)若$\overrightarrow{a}$=(1,0),$\overrightarrow$=(-1,1),$\overrightarrow{c}$=2$\overrightarrow{a}$+$\overrightarrow$.求|$\overrightarrow{c}$|;
(2)若|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,求$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.已知數列{an}的前n項和為Sn=2n2-3n(n∈N*),則a7-a2=( 。
A.20B.15C.10D.-5

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知多項式f(x)=2x7+x6+x4+x2+1,當x=2時的函數值時用秦九韶算法計算V2的值是( 。
A.1B.5C.10D.12

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.求函數y=$\frac{sinx+1}{cosx-2}$的值域.

查看答案和解析>>

同步練習冊答案