設(shè)全集U=R,A={x|x2+x-20<0},B={x||2x+5|>7},C={x|x2-3mx+2m2<0}.
(1)若C⊆(A∩B),求m的取值范圍;
(2)若(CUA)∩(CUB)⊆C,求m的取值范圍.

解:由題意,A=(-5,4),B=(-∞,-6)∪(1,+∞),C={x|x2-3mx+2m2<0}={x|(x-m)(x-2m)<0}.
(1)A∩B=(1,4),m=0時(shí),C=∅,符合題意;
m>0時(shí),2m>m,C=(m,2m),∵C⊆(A∩B),∴m≥1且2m≤4,∴1≤m≤2
m<0時(shí),2m<m,C=(2m,m),顯然不滿足C⊆(A∩B),
綜上知,m的取值范圍是m=0或1≤m≤2;
(2)∵(CUA)∩(CUB)⊆C,∴CU(A∪B)⊆C
∵A=(-5,4),B=(-∞,-6)∪(1,+∞),∴CU(A∪B)=[-6,-5]
∴[-6,-5]⊆C
m>0時(shí),2m>m,C=(m,2m),顯然不成立;
m<0時(shí),2m<m,C=(2m,m),∴2m<-6且m>-5
∴-5<m<-3
分析:(1)先分別化簡(jiǎn)集合A,B,從而可求A∩B,再由C⊆(A∩B),分類(lèi)討論可求m的取值范圍;
(2)根據(jù)(CUA)∩(CUB)⊆C,可得CU(A∪B)⊆C,從而先求CU(A∪B),再進(jìn)行分類(lèi)討論,從而得解.
點(diǎn)評(píng):本題以集合為載體,考查集合的運(yùn)算,考查分類(lèi)討論思想,解題的關(guān)鍵是將集合A,B化簡(jiǎn),及問(wèn)題的等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,A={x|
x-2
x+1
<0}
,B={x|sin x≥
3
2
},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,A={x|
x-a
x+b
≥0}
,?UA=(-1,-a),則a+b=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,A={x|x<2},B={x||x-1|≤3},則(?UA)∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,A={x|x2+x-20<0},B={x||2x+5|>7},C={x|x2-3mx+2m2<0}.
(1)若C⊆(A∩B),求m的取值范圍;
(2)若(CUA)∩(CUB)⊆C,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,A={x|ax+1=0},B={1,2},若A∩(?UB)=?,則實(shí)數(shù)a的取值集合是( 。
A、{0}
B、?
C、{-1,-
1
2
}
D、{-1,-
1
2
,0}

查看答案和解析>>

同步練習(xí)冊(cè)答案