4.如圖,AB為圓O的直徑,P是AB延長線上一點,割線PCD交圓O于C,D兩點,過點P作AP的垂線,交直線AC于點E,交直線AD于點F.
(1)證明:F、E、C、D四點共圓;
(2)若AP=10,BP=2,CP=3,求sin∠DPF的值.

分析 (1)連接BD,由對應(yīng)角相等可得△ADB∽△APF,由相似三角形的性質(zhì)和四點共圓的判定:對角互補,即可得證;
(2)由圓的割線定理可得,PB•PA=PC•PD,結(jié)合條件求得PD,OD,連接OD,在△POD中運用余弦定理,可得cos∠DPO,再由誘導(dǎo)公式即可得到所求值.

解答 解:(1)證明:連接BD,
由AB為直徑,可得∠ADB=90°,
由∠APF=∠ADB=90°,
且∠DAB=∠PAF,
可得△ADB∽△APF,
即有∠ABD=∠AFP,
又∠ACD=∠ABD,
可得∠ACD=∠AFP,
即∠DCE+∠DFE=180°,
可得F、E、C、D四點共圓;
(2)AP=10,BP=2,CP=3,
由圓的割線定理可得,PB•PA=PC•PD,
即為2×10=3PD,
即PD=$\frac{20}{3}$.
PA=PB+AB,即AB=PA-PB=10-2=8.
可得OD=4,
連接OD,在△POD中,PO=6,PD=$\frac{20}{3}$,OD=4,
由余弦定理可得cos∠DPO=$\frac{P{D}^{2}+P{O}^{2}-O{D}^{2}}{2PD•PO}$
=$\frac{\frac{400}{9}+36-16}{2×\frac{20}{3}×6}$=$\frac{29}{36}$.
則sin∠DPF=sin(90°-∠DPO)=cos∠DPO=$\frac{29}{36}$.

點評 本題考查圓的割線定理和相似三角形的判定和性質(zhì),考查四點共圓的判定,注意運用對角互補,考查推理能力和運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)a>1,a2x>a3,則x的取值范圍是x>$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在正方形ABCD中,點E是AB的中點,點F是BC的中點,將△AED、△DCF分別沿DE、DF折起,使A、C兩點重合于點P,點P在平面DEF上的射影點為H.
(1)求證:B、H、D三點共線;
(2)求二面角P-EF-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知e是自然對數(shù)的底數(shù),F(xiàn)(x)=2ex-1+x+lnx,f(x)=a(x-1)+3
(1)設(shè)T(x)=F(x)-f(x),當(dāng)a=1+2e-1時,求證:T(x)在(0,+∞)上單調(diào)遞增;
(2)若?x≥1,F(xiàn)(x)≥f(x),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-4t+a}\\{y=3t-1}\end{array}\right.$(t為參數(shù)),在直角坐標(biāo)系xOy中,以原點O為極點,x軸的非負(fù)半軸為極軸,以相同的才長度單位建立極坐標(biāo)系,設(shè)圓M的極坐標(biāo)方程為:ρ2-6ρsinθ=-5.
(1)求圓M的直角坐標(biāo)方程;
(2)若直線l截圓所得弦長為2$\sqrt{3}$,求整數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=xlnx+mx2-m在定義域內(nèi)不存在極值點,則實數(shù)m的取值范圍為(-∞,-$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=2x2-lnx的遞增區(qū)間是( 。
A.(-∞,-$\frac{1}{2}$)及(0,$\frac{1}{2}$)B.(-$\frac{1}{2}$,0)及($\frac{1}{2}$,+∞)C.(0,$\frac{1}{2}$)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.定義在R上的函數(shù)f(x)的圖象過點(0,5),其導(dǎo)函數(shù)是f′(x),且滿足f′(x)<1-f(x),則不等式exf(x)>ex+4(e為自然對數(shù)的底數(shù))的解集為(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,則下面判斷正確的是( 。
A.在區(qū)間(1,3)內(nèi)f(x)是減函數(shù)B.當(dāng)x=1時,f(x)取到極大值
C.在(4,5)內(nèi)f(x)是增函數(shù)D.當(dāng)x=2時,f(x)取到極小值

查看答案和解析>>

同步練習(xí)冊答案