精英家教網 > 高中數學 > 題目詳情
設函數f(x)的定義域關于原點對稱,對定義域內任意的x存在x1和x2,使x=x1-x2,且滿足:
(1)f(x1-x2)=
f(x1)-f(x2)1+f(x1)•f(x2)

(2)當0<x<4時,f(x)>0
請回答下列問題:
(1)判斷函數的奇偶性并給出理由;
(2)判斷f(x)在(0,4)上的單調性并給出理由.
分析:(1)對定義域內任意x存在x1和x2,使x=x1-x2,同樣存在x1和x2,使-x=x2-x1,根據條件(1)可得f(x1-x2)與f(x2-x1)的關系,即f(x)與f(-x)間的關系,根據奇偶函數定義即可判斷;
(2)任意取x1,x2∈(0,4),且x1<x2,則x2-x1>0,由奇函數性質可得f(x1-x2)的符號,再由條件(1)可比較f(x1)與f(x2)的大小,根據增減函數的定義即可判斷;
解答:解:(1)函數f(x)在定義域內是奇函數.
因為在定義域內,對任意x存在x1和x2,使x=x1-x2,且滿足:f(x1-x2)=
f(x1)-f(x2)
1+f(x1)•f(x2)
;
由于函數f(x)的定義域關于原點對稱,-x必與x同時在定義域內,
同樣存在x1和x2,使-x=x2-x1,且滿足:f(-x)=f(x2-x1)=
f(x2)-f(x1)
1+f(x2)•f(x1)
,即f(x)=-f(-x),
∴f(-x)=-f(x),
∴函數f(x)在定義域內是奇函數.
(2)函數f(x)在(0,4)上是單調遞增函數.
任意取x1,x2∈(0,4),且x1<x2,則x2-x1>0,
∵函數f(x)在定義域內是奇函數,且當0<x<4時,f(x)>0,
∴f(x1)>0,f(x2)>0,f(x1-x2)=-f(x2-x1)<0,
又∵f(x1-x2)=
f(x1)-f(x2)
1+f(x1)•f(x2)

∴f(x1)-f(x2)<0,∴f(x1)<f(x2),
∴函數f(x)在(0,4)上是單調遞增函數.
點評:本題考查抽象函數奇偶性、單調性的判斷,屬中檔題,定義是解決該類問題的基本方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)的定義在R上的偶函數,且是以4為周期的周期函數,當x∈[0,2]時,f(x)=2x-cosx,則a=f(-
3
2
)與b=f(
15
2
)的大小關系為
a>b
a>b

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)的定義域為D,若對于任意x1,x2∈D,當x1<x2時,都有f(x1)≤f(x2),則稱函數f(x)在D上為非減函數.設函數f(x)為定義在[0,1]上的非減函數,且滿足以下三個條件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③當x∈[0,
1
4
]
時,f(x)≥2x恒成立.則f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

設函數f(x)的定義在R上的偶函數,且是以4為周期的周期函數,當x∈[0,2]時,f(x)=2x-cosx,則a=f(-數學公式)與b=f(數學公式)的大小關系為________.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年安徽省蚌埠二中高三(上)12月月考數學試卷(文科)(解析版) 題型:填空題

設函數f(x)的定義在R上的偶函數,且是以4為周期的周期函數,當x∈[0,2]時,f(x)=2x-cosx,則a=f(-)與b=f()的大小關系為   

查看答案和解析>>

科目:高中數學 來源:山東省月考題 題型:填空題

設函數f(x)的定義在R上的偶函數,且是以4為周期的周期函數,當x∈[0,2]時,f(x)=2x﹣cosx,則a=f(﹣)與b=f()的大小關系為(    ).

查看答案和解析>>

同步練習冊答案