【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享自行車”在很多城市相繼出現(xiàn).某運營公司為了了解某地區(qū)用戶對其所提供的服務(wù)的滿意度,隨機調(diào)查了40個用戶,得到用戶的滿意度評分如下:
用系統(tǒng)抽樣法從40名用戶中抽取容量為10的樣本,且在第一分段里隨機抽到的評分?jǐn)?shù)據(jù)為92.
(1)請你列出抽到的10個樣本的評分?jǐn)?shù)據(jù);
(2)計算所抽到的10個樣本的均值和方差;
(3)在(2)條件下,若用戶的滿意度評分在之間,則滿意度等級為“級”.試應(yīng)用樣本估計總體的思想,估計該地區(qū)滿意度等級為“級”的用戶所占的百分比是多少?(精確到)
參考數(shù)據(jù):.
【答案】(1)樣本的評分?jǐn)?shù)據(jù)為92,84,86,78,89,74,83,78,77,89. (2),=33(3)
【解析】試題分析:(1)由第一分段里隨機抽到的評分?jǐn)?shù)據(jù)為的編號為,根據(jù)系統(tǒng)抽樣方法先抽取樣本的編號,再對應(yīng)抽取評分?jǐn)?shù)據(jù)即可;(2)先根據(jù)樣本平均值公式直接求出抽到的個樣本的均值,再根據(jù)方差公式求出方差即可;(3)由題意知評分在之間,即之間,根據(jù)表格數(shù)據(jù)可得容量為的樣本評分在之間有人,則該地區(qū)滿意度等級為“級”的用戶所占的百分比約為.
試題解析:(1)由題意得,通過系統(tǒng)抽樣分別抽取編號為4,8,12,16,20,24,28,32,36,40的評分?jǐn)?shù)據(jù)為樣本,則樣本的評分?jǐn)?shù)據(jù)為92,84,86,78,89,74,83,78,77,89.
(2)由(1)中的樣本評分?jǐn)?shù)據(jù)可得,
則有
(3)由題意知評分在之間,即之間,
由(1)中容量為10的樣本評分在之間有5人,則該地區(qū)滿意度等級為“級”的用戶所占的百分比約為.
另解:由題意知評分在,即之間,,從調(diào)查的40名用戶評分?jǐn)?shù)據(jù)中在共有21人,則該地區(qū)滿意度等級為“級”的用戶所占的百分比約為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】朱載堉(1536—1611),明太祖九世孫,音樂家、數(shù)學(xué)家、天文歷算家,在他多達(dá)百萬字的著述中以《樂律全書》最為著名,在西方人眼中他是大百科全書式的學(xué)者王子。他對文藝的最大貢獻(xiàn)是他創(chuàng)建了“十二平均律”,此理論被廣泛應(yīng)用在世界各國的鍵盤樂器上,包括鋼琴,故朱載堉被譽為“鋼琴理論的鼻祖”!笆骄伞笔侵敢粋八度有13個音,相鄰兩個音之間的頻率之比相等,且最后一個音頻率是最初那個音頻率的2倍,設(shè)第二個音的頻率為,第八個音的頻率為,則等于
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題“關(guān)于的不等式對任意恒成立”,命題“函數(shù)在區(qū)間上是增函數(shù)”.
(1)若為真,求實數(shù)的取值范圍;
(2)若為假,為真,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校為了讓高一學(xué)生更有效率地利用周六的時間,在高一新生第一次摸底考試后采取周六到校自主學(xué)習(xí),同時由班主任老師值班,家長輪流值班.一個月后進行了第一次月考,高一數(shù)學(xué)教研組通過系統(tǒng)抽樣抽取了名學(xué)生,并統(tǒng)計了他們這兩次數(shù)學(xué)考試的優(yōu)良人數(shù)和非優(yōu)良人數(shù),其中部分統(tǒng)計數(shù)據(jù)如下:
(1)請畫出這次調(diào)查得到的列聯(lián)表;并判定能否在犯錯誤概率不超過的前提下認(rèn)為周六到校自習(xí)對提高學(xué)生成績有效?
(2)從這組學(xué)生摸底考試中數(shù)學(xué)優(yōu)良成績中和第一次月考的數(shù)學(xué)非優(yōu)良成績中,按分層抽樣隨機抽取個成績,再從這個成績中隨機抽取個,求這個成績來自同一次考試的概率.
下面是臨界值表供參考:
(參考公式: ,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若關(guān)于的不等式恰有3個整數(shù)解,則實數(shù)的最小值為( )
A. 1 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線 的左、右焦點分別為,過作傾斜角為的直線與軸和雙曲線的右支分別交于兩點,若點平分線段,則該雙曲線的離心率是( )
A. B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),其中為的導(dǎo)函數(shù).證明:對任意.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點分別為,,焦距為6.
(1)求橢圓的方程.
(2)過橢圓左頂點的兩條斜率之積為的直線分別與橢圓交于點.試問直線是否過某定點?若過,求出該點的坐標(biāo);若不過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調(diào)遞減區(qū)間;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com