如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4, BD=,AB=2CD=8.

(1)設(shè)M是PC上的一點,證明:平面MBD⊥平面PAD;
(2)求四棱錐P-ABCD的體積.
(1)對于面面垂直的證明,主要是利用線面垂直來結(jié)合判定定理得到。
(2)24

試題分析:(Ⅰ)在△ABD中,∵AD=4, BD=,

AB=8,∴.                   2分
∴ AD⊥BD又 ∵平面PAD⊥平面ABCD,
平面PAD平面ABCD=AD,BD平面ABCD,    4分
∴BD⊥平面PAD.又BD平面MBD, 
∴平面MBD⊥平面PAD.                         7分
(Ⅱ)過P作PO⊥AD交AD于O, ∵平面PAD⊥平面ABCD,
∴PO⊥平面ABCD.即PO為四棱錐P-ABCD的高.     8分
又 ∵△PAD是邊長為4的等邊三角形,∴.
在Rt△ADB中,斜邊AB邊上的高為,此即為梯形ABCD的高. 12分∴梯形ABCD的面積  14分
點評:解決的關(guān)鍵是通過面面垂直的判定定理,以及棱錐的體積公式來得到,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,A是半徑為1的球面上一定點,動點P在此球面上運動,且,
記點P的軌跡的長度為,則函數(shù)的圖像可能是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形中(圖1),,中點為,將圖1沿直線折起,使二面角(圖2)
 
(1)過作直線平面,且平面=,求的長度。
(2)求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下圖是由哪個平面圖形旋轉(zhuǎn)得到的(   )

A.           B.         C.          D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于直線以及平面,下面命題中正確的是
A.若
B.若
C.若
D.若,且,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將正方形ABCD沿對角線BD折成直二面角,有如下四個結(jié)論:
①AC⊥BD;②是等邊三角形;③所成的角為;④與平面的角。
其中正確的結(jié)論的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓錐的底面半徑為,高為,則圓錐的側(cè)面積是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法正確的是(    )
A.有兩個面平行,其余各面都是四邊形的幾何體叫棱柱.
B.有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱.
C.有一個面是多邊形,其余各面都是三角形的幾何體叫棱錐.
D.棱臺各側(cè)棱的延長線交于一點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

下面三個圖中,右面的是一個長方體截去一個角所得多面體的直觀圖,它的正視圖和側(cè)視圖在左面畫出(單位:cm).


(1)在正視圖下面,按照畫三視圖的要求畫出該多面體的俯視圖;
(2)按照給出的尺寸,求該多面體的體積;

查看答案和解析>>

同步練習(xí)冊答案