已知為公差不為零的等差數(shù)列,首項(xiàng),的部分項(xiàng)、…、恰為等比數(shù)列,且,
(1)求數(shù)列的通項(xiàng)公式(用表示);
(2)若數(shù)列的前項(xiàng)和為,求
(1);(2)

試題分析:(1)設(shè)的公差為,由成等比數(shù)列可得方程,解出后注意檢驗(yàn),用等差數(shù)列通項(xiàng)公式可求;
(2)由等差數(shù)列通項(xiàng)公式可表示出,再由等比數(shù)列通項(xiàng)公式表示出,由其相等可得,然后利用分組求和可得結(jié)論;
(1)為公差不為,由已知得,,成等比數(shù)列,
∴ , 得  
,則 ,這與,,成等比數(shù)列矛盾,所以,
所以
(2)由(1)可知,∴ ,而等比數(shù)列的公比。
  因此,
,                    

 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和為滿足,且.
(1)試求出的值;
(2)根據(jù)的值猜想出關(guān)于的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列{2n-1·an}的前n項(xiàng)和Sn=9-6n,則數(shù)列{an}的通項(xiàng)公式是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)等差數(shù)列的前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和,并求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

等差數(shù)列的前項(xiàng)和為,已知,
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某種汽車購買時(shí)費(fèi)用為16.9萬元,每年應(yīng)交付保險(xiǎn)費(fèi)、汽油費(fèi)費(fèi)用共1.5萬元,汽車的維修費(fèi)
用為:第一年0.4萬元,第二年0.6萬元,第三年0.8萬元,依等差數(shù)列逐年遞增.
(1)設(shè)該車使用n年的總費(fèi)用(包括購車費(fèi)用)為試寫出的表達(dá)式;
(2)求這種汽車使用多少年報(bào)廢最合算(即該車使用多少年平均費(fèi)用最少).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列滿足,表示項(xiàng)之積,則=  (     )
A.-3B.3C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列是等差數(shù)列,,,則首項(xiàng)      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列3, 7, 11 …中,第5項(xiàng)為(    )
A.15B.18C.23D.19

查看答案和解析>>

同步練習(xí)冊(cè)答案