【題目】在標(biāo)準(zhǔn)溫度和大氣壓下,人體血液中氫離子的物質(zhì)的量的濃度(單位mol/L,記作和氫氧根離子的物質(zhì)的量的濃度(單位mol/L,記作的乘積等于常數(shù).已知pH值的定義為,健康人體血液的pH值保持在7.357.45之間,那么健康人體血液中的可以為(參考數(shù)據(jù): ,

A. B. C. D.

【答案】C

【解析】,,,, ,,故選C.

【思路點(diǎn)睛】本題主要考查閱讀能力、數(shù)學(xué)建模能力和化歸思想以及對數(shù)的性質(zhì)與運(yùn)算法則,屬于難題. 與實(shí)際應(yīng)用相結(jié)合的題型也是高考命題的動向,這類問題的特點(diǎn)是通過現(xiàn)實(shí)生活的事例考查書本知識,解決這類問題的關(guān)鍵是耐心讀題、仔細(xì)理解題,只有吃透題意,才能將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型進(jìn)行解答. 理解本題題意的關(guān)鍵是:“pH值的定義為的理解和應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(導(dǎo)學(xué)號:05856309)

已知拋物線C的方程為x2=4y,M(2,1)為拋物線C上一點(diǎn),F為拋物線的焦點(diǎn).

(Ⅰ)求|MF|;

(Ⅱ)設(shè)直線l2ykxm與拋物線C有唯一公共點(diǎn)P,且與直線l1y=-1相交于點(diǎn)Q,試問,在坐標(biāo)平面內(nèi)是否存在點(diǎn)N,使得以PQ為直徑的圓恒過點(diǎn)N?若存在,求出點(diǎn)N的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),有三個不同的零點(diǎn),(其中),則的值為( )

A. B. C. -1 D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的單調(diào)函數(shù)f(x)滿足f(2),且對任意x,yR,都有f(xy)f(x)f(y)

(1)求證:f(x)為奇函數(shù);

(2)f(k·3x)f(3x9x2)<0對任意xR恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1若關(guān)于的方程上恒成立,求的值;

2)證明:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列 滿足: , 或1().對任意,都存在,使得.,其中 且兩兩不相等.

(I)若.寫出下列三個數(shù)列中所有符合題目條件的數(shù)列的序號;

①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2

(Ⅱ)記.若,證明:

(Ⅲ)若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級如下表:

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:

(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品”的規(guī)定?

(2)在樣本中,按產(chǎn)品等級用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標(biāo)值近似滿足,則“質(zhì)量提升月”活動后的質(zhì)量指標(biāo)值的均值比活動前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱柱中,底面是正方形,且,

1)求證 ;

2)若動點(diǎn)在棱上,試確定點(diǎn)的位置,使得直線與平面所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為,直線與直線垂直,橢圓經(jīng)過點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)作橢圓的兩條互相垂直的弦.若弦的中點(diǎn)分別為,證明:直線恒過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案