【題目】在標(biāo)準(zhǔn)溫度和大氣壓下,人體血液中氫離子的物質(zhì)的量的濃度(單位mol/L,記作)和氫氧根離子的物質(zhì)的量的濃度(單位mol/L,記作)的乘積等于常數(shù).已知pH值的定義為,健康人體血液的pH值保持在7.35~7.45之間,那么健康人體血液中的可以為(參考數(shù)據(jù): , )
A. B. C. D.
【答案】C
【解析】,,,, ,,,故選C.
【思路點(diǎn)睛】本題主要考查閱讀能力、數(shù)學(xué)建模能力和化歸思想以及對數(shù)的性質(zhì)與運(yùn)算法則,屬于難題. 與實(shí)際應(yīng)用相結(jié)合的題型也是高考命題的動向,這類問題的特點(diǎn)是通過現(xiàn)實(shí)生活的事例考查書本知識,解決這類問題的關(guān)鍵是耐心讀題、仔細(xì)理解題,只有吃透題意,才能將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型進(jìn)行解答. 理解本題題意的關(guān)鍵是:“pH值的定義為”的理解和應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856309)
已知拋物線C的方程為x2=4y,M(2,1)為拋物線C上一點(diǎn),F為拋物線的焦點(diǎn).
(Ⅰ)求|MF|;
(Ⅱ)設(shè)直線l2:y=kx+m與拋物線C有唯一公共點(diǎn)P,且與直線l1:y=-1相交于點(diǎn)Q,試問,在坐標(biāo)平面內(nèi)是否存在點(diǎn)N,使得以PQ為直徑的圓恒過點(diǎn)N?若存在,求出點(diǎn)N的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的單調(diào)函數(shù)f(x)滿足f(2)=,且對任意x,y∈R,都有f(x+y)=f(x)+f(y).
(1)求證:f(x)為奇函數(shù);
(2)若f(k·3x)+f(3x-9x-2)<0對任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列: 滿足: , 或1().對任意,都存在,使得.,其中 且兩兩不相等.
(I)若.寫出下列三個數(shù)列中所有符合題目條件的數(shù)列的序號;
①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2
(Ⅱ)記.若,證明: ;
(Ⅲ)若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級如下表:
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品”的規(guī)定?
(2)在樣本中,按產(chǎn)品等級用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標(biāo)值近似滿足,則“質(zhì)量提升月”活動后的質(zhì)量指標(biāo)值的均值比活動前大約提升了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱柱中,底面是正方形,且, .
(1)求證: ;
(2)若動點(diǎn)在棱上,試確定點(diǎn)的位置,使得直線與平面所成角的正弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為,直線與直線垂直,橢圓經(jīng)過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)作橢圓的兩條互相垂直的弦.若弦的中點(diǎn)分別為,證明:直線恒過定點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com