【題目】在四棱柱中,底面是正方形,且, .
(1)求證: ;
(2)若動點在棱上,試確定點的位置,使得直線與平面所成角的正弦值為.
【答案】(1)見解析(2)
【解析】試題分析:(1)連接, , , 與的交點為,連接,則,由正方形的性質可得,從而得平面, ,
又,所以;(2)由勾股定理可得,由(1)得所以底面,所以、、兩兩垂直.以點為坐標原點, 的方向為軸的正方向,建立空間直角坐標系,設(),求得,利用向量垂直數(shù)量積為零可得平面的一個法向量為,利用空間向量夾角余弦公式列方程可解得,從而可得結果.
試題解析:(1)連接, , ,
因為, ,
所以和均為正三角形,
于是.
設與的交點為,連接,則,
又四邊形是正方形,所以,
而,所以平面.
又平面,所以,
又,所以.
(2)由,及,知,
于是,從而,
結合, ,得底面,
所以、、兩兩垂直.
如圖,以點為坐標原點, 的方向為軸的正方向,建立空間直角坐標系,
則, , , , , ,
, ,
由,易求得.
設(),
則,即,
所以.
設平面的一個法向量為,
由得令,得,
設直線與平面所成角為,則
,
解得或(舍去),
所以當為的中點時,直線與平面所成角的正弦值為.
【方法點晴】本題主要考查利用線面垂直證明線線垂直以及利用空間向量求二面角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當?shù)目臻g直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據(jù)定理結論求出相應的角和距離.
科目:高中數(shù)學 來源: 題型:
【題目】設p:f(x)=在區(qū)間(1,+∞)上是減函數(shù);q:若x1,x2是方程x2-ax-2=0的兩個實根,則不等式m2+5m-3≥|x1-x2|對任意實數(shù)a∈[-1,1]恒成立.若p不正確,q正確,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在標準溫度和大氣壓下,人體血液中氫離子的物質的量的濃度(單位mol/L,記作)和氫氧根離子的物質的量的濃度(單位mol/L,記作)的乘積等于常數(shù).已知pH值的定義為,健康人體血液的pH值保持在7.35~7.45之間,那么健康人體血液中的可以為(參考數(shù)據(jù): , )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設動點到定點的距離比它到軸的距離大,記點的軌跡為曲線.
(1)求點的軌跡方程;
(2)若圓心在曲線上的動圓過點,試證明圓與軸必相交,且截軸所得的弦長為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為F,直線與x軸的交點為P,與拋物線的交點為Q,且.
(1)求拋物線的方程;
(2)過F的直線l與拋物線相交于A,D兩點,與圓相交于B,C兩點(A,B兩點相鄰),過A,D兩點分別作拋物線的切線,兩條切線相交于點M,求△ABM與△CDM的面積之積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了鼓勵學生熱心公益,服務社會,成立了“慈善義工社”.2017年12月,該校“慈善義工社”為學生提供了4次參加公益活動的機會,學生可通過網(wǎng)路平臺報名參加活動.為了解學生實際參加這4次活動的情況,該校隨機抽取100名學生進行調查,數(shù)據(jù)統(tǒng)計如下表,其中“√”表示參加,“×”表示未參加.
根據(jù)表中數(shù)據(jù)估計,該校4000名學生中約有120名這4次活動均未參加.
(Ⅰ)求的值;
(Ⅱ)從該校4000名學生中任取一人,試估計其2017年12月恰參加了2次學校組織的公益活動的概率;
(Ⅲ)已知學生每次參加公益活動可獲得10個公益積分,任取該校一名學生,記該生2017年12月獲得的公益積分為,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=sin2ax-sin ax·cos ax- (a>0)的圖象與直線y=b相切,并且切點的橫坐標依次成公差為的等差數(shù)列.
(1)求a,b的值;
(2)若x0∈,且x0是y=f(x)的零點,試寫出函數(shù)y=f(x)在上的單調增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓的下頂點為,點是橢圓上異于點的動點,直線分別與軸交于點,且點是線段的中點.當點運動到點處時,點的坐標為.
(1)求橢圓的標準方程;
(2)設直線交軸于點,當點均在軸右側,且時,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com