已知雙曲線的右焦點為,則該雙曲線的漸近線方程為(    )                         
A.B.C.D.
A

試題分析:∵雙曲線的右焦點為,∴9+a=13,∴a=4,,∴該雙曲線的漸近線方程為,故選A
點評:若雙曲線方程為-=1(a>0,b>0),則漸近線方程的求法是令-=0,即兩條漸近線方程為±=0;若雙曲線方程為-=1(a>0,b>0),則漸近線方程的求法是令-=0,即兩條漸近線方程為±=0
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
在平面直角坐標系xOy中,拋物線C的頂點在原點,經(jīng)過點A(2,2),其焦點F在x軸上.
(1)求拋物線C的標準方程;
(2)設(shè)直線l是拋物線的準線,求證:以AB為直徑的圓與準線l相切.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓O和定點A(2,1),由圓O外一點向圓O引切線PQ,切點為Q,且滿足

(1) 求實數(shù)a、b間滿足的等量關(guān)系;
(2) 若以P為圓心所作的圓P與圓O有公共點,試求半徑取最小值時圓P的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線上橫坐標為4的點到焦點的距離為5.

(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線與拋物線C交于兩點,,且(a為正常數(shù)).過弦AB的中點M作平行于x軸的直線交拋物線C于點D,連結(jié)AD、BD得到
(i)求實數(shù)a,b,k滿足的等量關(guān)系;
(ii)的面積是否為定值?若為定值,求出此定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓的左焦點作直線交橢圓于兩點,若存在直線使坐標原點恰好在以為直徑的圓上,則橢圓的離心率取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知曲線(a>0,b>0)的兩個焦點為,若P為其上一點, , 則雙曲線離心率的取值范圍為(     )
A.(3,+)B.C.(1,3)D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若拋物線的焦點與雙曲線的左焦點重合,則實數(shù)=    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的左、右焦點為、,直線x=m過且與橢圓相交于A,B兩點,則的面積等于          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓與圓為橢圓半焦距)有四個不同交點,則離心率的取值范圍是 (   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案