精英家教網 > 高中數學 > 題目詳情
(1)若a>0,b>0,且函數f(x)=4x3-ax2-2bx+2在x=1處有極值,則ab的最大值等于
 

(2)如圖,它滿足①第n行首尾兩數均為n,②表中的遞推關系類似楊輝三角,則第n行(n≥2)第2個數是
 
考點:進行簡單的合情推理
專題:綜合題
分析:(1)求出導函數,利用函數在極值點處的導數值為0得到a,b滿足的條件,利用基本不等式求出ab的最值;
(2)依據“中間的數從第三行起,每一個數等于它兩肩上的數之和”則第二個數等于上一行第一個數與第二個數的和,即有an+1=an+n(n≥2),再由累加法求解即可.
解答: 解:(1)由題意,求導函數f′(x)=12x2-2ax-2b,
∵在x=1處有極值,
∴a+b=6,
∵a>0,b>0,
∴ab≤(
a+b
2
2=9,當且僅當a=b=3時取等號,
所以ab的最大值等于9.
(2)依題意an+1=an+n(n≥2),a2=2,
所以a3-a2=2,a4-a3=3,…,an-an-1=n,
累加得 an-a2=2+3+…+(n-1)=
(n-1)(n+1)
2
,
∴an=
n2-n+2
2

故答案為:9,
n2-n+2
2
點評:本題考查函數在極值點處的導數值為0、考查利用基本不等式求最值,需注意:一正、二定、三相等;考查學生的讀圖能力,通過三角數表構造了一系列數列,考查了數列的通項及求和的方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}滿足條件:a1=0,an+1=an+(2n-1).
(1)寫出數列{an}的前5項;
(2)由前5項歸納出該數列的一個通項公式.(不要求證明)

查看答案和解析>>

科目:高中數學 來源: 題型:

下列不等關系中,正確的是(  )
A、(
1
2
 
2
3
<1<(
1
2
 
1
3
B、(
1
2
 
1
3
<(
1
2
 
2
3
<1
C、1<(
1
2
 
1
3
<(
1
2
 
2
3
D、(
1
2
 
2
3
<(
1
2
 
1
3
<1

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=2x+
1
x
(x>0)的最小值為( 。
A、2
B、2
2
C、4
D、4
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
C
x+3
15
=
C
2x
15
,求x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)計算:(
8
125
)-
1
3
-(-
3
5
)0+160.75+(0.25)
1
2

(2)已知:log32=a,3b=5,試用a,b表示log3
30

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a∈R,解關于x的不等式:x2+(a+1)x+a<0.

查看答案和解析>>

科目:高中數學 來源: 題型:

直線l1的斜率為-
1
2
,直線l1⊥l2,則l2的斜率為(  )
A、-
1
2
B、1
C、
3
D、2

查看答案和解析>>

科目:高中數學 來源: 題型:

412(5)=
 
(7)

查看答案和解析>>

同步練習冊答案