分析 (I)將函數(shù)進行化簡,結(jié)合三角函數(shù)的圖象和性質(zhì)和已知坐標,即可求函數(shù)ω和φ的值;
(II)求出函數(shù)y=f(2x)的解析式,根據(jù)x∈[0,$\frac{π}{2}$]求出函數(shù)y=f(2x)的范圍,在求其范圍內(nèi)的最大值和最小值,即可得到值域.
解答 解:f(x)=$\frac{1}{2}$sin2ωxcosφ+cos2ωxsinφ+$\frac{1}{2}$cos($\frac{π}{2}$+φ)(0<φ<π),
?f(x)=$\frac{1}{2}$sin2ωxcosφ+cos2ωxsinφ-$\frac{1}{2}$sinφ
?f(x)=$\frac{1}{2}$sin2ωxcosφ+sinφ(cos2ωx-$\frac{1}{2}$)
?f(x)=$\frac{1}{2}$sin2ωxcosφ+$\frac{1}{2}$cos2ωxsinφ
?f(x)=$\frac{1}{2}$sin(2ωx+φ),
(I)∵圖象上相鄰兩條對稱軸之間的距離為π,∴T=2π,
又∵T=$\frac{2π}{|2ω|}$,∴ω=$±\frac{1}{2}$,
圖象過點($\frac{π}{6},\frac{1}{2}$),∴$\frac{1}{2}$=$\frac{1}{2}$sin(±1×$\frac{π}{6}$+φ),
解得:$φ=\frac{π}{3}或φ=\frac{2π}{3}$,
∴f(x)=$\frac{1}{2}$sin(x+$\frac{π}{3}$)或f(x)=$\frac{1}{2}$sin(-x+$\frac{2π}{3}$);
(Ⅱ)∵y=f(2x),
∴y=f(2x)=$\frac{1}{2}$sin(2x+$\frac{π}{3}$),【注意:只需要一個解析式即可,其實兩個解析式化簡是一樣的】
又∵x∈[0,$\frac{π}{2}$],
∴2x+$\frac{π}{3}$∈[$\frac{π}{3},\frac{4π}{3}$],
結(jié)合正弦函數(shù)的圖象和性質(zhì):當$x=\frac{π}{2}$時,y取得最大值,即${y}_{max}=\frac{1}{2}sin\frac{π}{2}=\frac{1}{2}$,
當$x=\frac{4π}{3}$時,y取得最小值,即${y}_{min}=\frac{1}{2}sin\frac{4π}{3}=\frac{1}{2}×(-\frac{\sqrt{3}}{2})=-\frac{\sqrt{3}}{4}$,
所以函數(shù)y=f(2x),x∈[0,$\frac{π}{2}$]的值域為$[-\frac{\sqrt{3}}{4},\frac{1}{2}]$.
點評 本題主要考查三角函數(shù)的圖象和性質(zhì),三角函數(shù)的化簡能力和計算能力,利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關鍵.屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 27 | B. | 28 | C. | 29 | D. | 30 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
物理 成績好 | 物理 成績不好 | 合計 | |
數(shù)學 成績好 | 62 | 23 | 85 |
數(shù)學 成績不好 | 28 | 22 | 50 |
合計 | 90 | 45 | 135 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com