若函數(shù)y=x3-3ax+a在(1,2)內(nèi)有極小值,則實數(shù)a的取值范圍是( )
A.1<a<2
B.1<a<4
C.2<a<4
D.a(chǎn)>4或a<1
【答案】分析:由函數(shù)y=x3-3ax+a在(1,2)內(nèi)有極小值,求導(dǎo),導(dǎo)函數(shù)在(1,2)內(nèi)至少有一個實數(shù)根,從而求得實數(shù)a的取值范圍.
解答:解:對于函數(shù)y=x3-3ax+a,求導(dǎo)可得y′=3x2-3a,
∵函數(shù)y=x3-3ax+a在(1,2)內(nèi)有極小值,
∴y′=3x2-3a=0,則其有一根在(1,2)內(nèi),
a>0時,3x2-3a=0兩根為±,
若有一根在(1,2)內(nèi),則1<<2,
即1<a<4,
a=0時,3x2-3a=0兩根相等,均為0,f(x)在(1,2)內(nèi)無極小值,
a<0時,3x2-3a=0無根,f(x)在(1,2)內(nèi)無極小值,
綜合可得,1<a<4,
故選B.
點評:考查利用導(dǎo)數(shù)研究函數(shù)的極值問題,體現(xiàn)了轉(zhuǎn)化的思想方法,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①在△ABC中,若
AB
CA
>0,∠A為銳角.
②函數(shù)y=x3在R上既是奇函數(shù)又是增函數(shù).
③不等式x2-4ax+3a2<0的解集為{x|a<x<3a}.
④函數(shù)y=f(x)的圖象與直線x=a至多有一個交點.
其中正確命題的序號是
②④
②④
.(把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論:
①函數(shù)y=x3在R上既是奇函數(shù)又是增函數(shù).
②命題p:?x∈R,tanx=1;命題q:?x∈R,x2-x+1>0,命題“p∧¬q”是假命題;
③函數(shù)y=f(x)的圖象與直線x=a至多有一個交點,不等式x2-4ax+3a2>0的解集為{x|a<x<3a};
④在△ABC中,若
AB
CA
>0,則∠A為銳角
其中正確的命題有( 。﹤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題:
(1)若f(x)=ax2+bx+3a+b是偶函數(shù),其定義域是[a-1,2a],則f(x)在區(qū)間(-
2
3
,-
1
3
)
是減函數(shù).
(2)如果一個數(shù)列{an}的前n項和Sn=abn+c,(a≠0,b≠1,c≠1)則此數(shù)列是等比數(shù)列的充要條件是a+c=0.
(3)曲線y=x3+x+1過點(1,3)處的切線方程為:4x-y-1=0.
(4)已知集合P∈{(x,y)|y=k},Q∈{(x,y)|y=ax+1,a>0且a≠1},若P∩Q只有一個子集.則k<1.
以上四個命題中,正確命題的序號是
(1)(2)
(1)(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
ax3+
1
2
bx2+cx
.(a≠0)
(1)若函數(shù)f(x)有三個零點x1,x2,x3,且x1+x2+x3=
9
2
,x1x3=-12,求函數(shù) y=f(x)的單調(diào)區(qū)間;
(2)若f′(1)=-
1
2
a
,3a>2c>2b,試問:導(dǎo)函數(shù)f′(x)在區(qū)間(0,2)內(nèi)是否有零點,并說明理由.
(3)在(Ⅱ)的條件下,若導(dǎo)函數(shù)f′(x)的兩個零點之間的距離不小于
3
,求
b
a
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x3+ax2+bx+3)•ecx,其中a、b、c∈R.
(1)當(dāng)c=1時,若x=0和x=1都是f(x)的極值點,試求f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)c=1時,若3a+2b+7=0,且x=1不是f(x)的極值點,求出a和b的值;
(3)當(dāng)c=0且a2+b=10時,設(shè)函數(shù)h(x)=f(x)-3在點M(1,h(1))處的切線為l,若l在點M處穿過函數(shù)h(x)的圖象(即動點在點M附近沿曲線y=h(x)運動,經(jīng)過點M時,從l的一側(cè)進入另一側(cè)),求函數(shù)y=h(x)的表達式.

查看答案和解析>>

同步練習(xí)冊答案