14.若函數(shù)f(x)=ax+2+1(a>0,a≠1),則此函數(shù)必過定點(-2,2).

分析 令x+2=0求得f(x)=a0+1=2,可得函數(shù)的圖象經(jīng)過得定點的坐標(biāo).

解答 解:令x+2=0,即x=-2,可得f(x)=a0+1=2,
可得函數(shù)的圖象經(jīng)過點,(-2,2),
故答案為:(-2,2).

點評 本題主要考查指數(shù)函數(shù)的單調(diào)性和特殊點,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.“方程$\frac{x^2}{2-n}$+$\frac{y^2}{n+1}$=1表示焦點在x軸的橢圓”是“-1<n<2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)中,在區(qū)間(0,+∞)上是增函數(shù)的是( 。
A.y=-2x+1B.y=x2-2C.y=$\frac{1}{x}$D.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=ax3+bx2+cx+d(a<$\frac{2}{3}$b),在R上是單調(diào)遞增函數(shù),則$\frac{3a+2b+c}{2b-3a}$的最小值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3x,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$則f[f($\frac{1}{2}$)]的值是(  )
A.-3B.3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x2-2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)當(dāng)x為何值時,f(logax)有最小值?求出該最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在等比數(shù)列{an}中,已知a4=3a3,則$\frac{{a}_{2}}{{a}_{1}}$+$\frac{{a}_{4}}{{a}_{2}}$+$\frac{{a}_{6}}{{a}_{3}}$+…+$\frac{{a}_{2n}}{{a}_{n}}$=( 。
A.$\frac{{3}^{-n}-3}{2}$B.$\frac{{3}^{1-n}-3}{2}$C.$\frac{{3}^{n}-3}{2}$D.$\frac{{3}^{n+1}-3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)${(5\frac{1}{16})^{0.5}}-2×{(2\frac{10}{27})^{-\frac{2}{3}}}-2×{(\sqrt{2+π})^0}$÷${(\frac{3}{4})^{-2}}$;
(2)2lg5+$\frac{2}{3}$lg8+lg5•lg20+(lg2)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,圓O是△ABC的外接圓,D是$\widehat{AC}$的中點,BD交AC于E.
(Ⅰ)求證:DC2=DE•DB;
(Ⅱ)若CD=4$\sqrt{3}$,點O到AC的距離等于點D到AC的距離的一半,求圓O的半徑r.

查看答案和解析>>

同步練習(xí)冊答案