13.已知棱錐的頂點(diǎn)為P,P在底面上的射影為O,PO=a,現(xiàn)用平行于底面的平面去截這個(gè)棱錐,截面交PO于M,并使截得的兩部分側(cè)面積相等,設(shè)OM=b,則a,b的關(guān)系是( 。
A.b=($\sqrt{2}$-1)aB.b=($\sqrt{2}$+1)aC.b=$\frac{2-\sqrt{2}}{2}$aD.b=$\frac{2+\sqrt{2}}{2}$a

分析 利用用平行于底面的平面去截這個(gè)棱錐,截面交PO于點(diǎn)M,并使截得的兩部分側(cè)面積相等,可得截得棱錐的側(cè)面積是原來側(cè)面積的$\frac{1}{2}$,即相似比為$\frac{\sqrt{2}}{2}$,即可確定a與b的關(guān)系.

解答 解:∵用平行于底面的平面去截這個(gè)棱錐,截面交PO于點(diǎn)M,并使截得的兩部分側(cè)面積相等,截得棱錐的側(cè)面積是原來側(cè)面積的$\frac{1}{2}$,即相似比為$\frac{\sqrt{2}}{2}$,
∵PO=a,OM=b,∴$\frac{a-b}{a}=\frac{\sqrt{2}}{2}$,∴b=(1-$\frac{\sqrt{2}}{2}$)a.
故選:C.

點(diǎn)評 本題考查棱錐的側(cè)面積,考查圖形的相似,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)是定義在區(qū)間[-2,2]的奇函數(shù),若f(x)+x•f′(x)>0,則不等式(-x+1)•f(1-x)>0的解集是[-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$(e為自然對數(shù)的底數(shù)).
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求證:當(dāng)x>0時(shí),f(x)>$\frac{x}{x+2}$恒成立;
(3)已知k>0,如果當(dāng)x>0時(shí),f(x)>$\frac{kx}{{e}^{x}+1}$恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,過原點(diǎn)斜率為k的直線與曲線y=lnx交于兩點(diǎn)A(x1,y1),B(x2,y2
①k的取值范圍是(0,$\frac{1}{e}$).
②$\frac{1}{x_1}$<k<$\frac{1}{x_2}$.
③當(dāng)x∈(x1,x2)時(shí),f(x)=kx-lnx先減后增且恒為負(fù).
以上結(jié)論中所有正確結(jié)論的序號是( 。
A.B.①②C.①③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.把正整數(shù)按如圖所示的規(guī)律排序,則從2014到2016箭頭方向依次為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.橢圓$\frac{x^2}{25}+{y^2}$=1上一點(diǎn)P到焦點(diǎn)F1的距離等于6,則點(diǎn)P到另一個(gè)焦點(diǎn)F2的距離為( 。
A.10B.8C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.函數(shù)f(x)=ax2-(2a+1)x+lnx
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間和極值;
(2)設(shè)g(x)=ex-x-1,當(dāng)a<0時(shí),若對任意x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=4x+$\frac{1}{{\sqrt{x}}}$,(x>0),記m=fmin(x);
(1)求m;
(2)解關(guān)于x的不等式|x-2|+|x-1|≥m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=2x+2ax-b(a,b∈R)滿足f(-2)=$\frac{17}{4}$,f(3)=$\frac{65}{8}$.
(1)判斷并證明函數(shù)f(x)在(-∞,0]上的單調(diào)性;
(2)若不等式f(x)-2t≥0對于?x∈(-∞,+∞)恒成立,求實(shí)數(shù)t的最大值.

查看答案和解析>>

同步練習(xí)冊答案