分析 (1)推導(dǎo)出OM∥VB,由此能證明VB∥平面MOC.
(2)推導(dǎo)出CO⊥AB,從而CO⊥平面VAB,由此能證明平面MOC⊥平面VAB.
(3)三棱錐V-ABC的體積VV-ABC=VC-VAB,由此能求出結(jié)果.
解答 (本小題滿分12分)
證明:(1)∵O,M分別為AB,VA的中點(diǎn),
∵OM∥VB,
又VB?平面MOC,MO?平面MOC,
∴VB∥平面MOC. …(4分)
(2)∵AC=BC,且O是AB的中點(diǎn),
∴CO⊥AB
又平面VAB⊥平面ABC,
∴CO⊥平面VAB,
又CO?平面MOC,
∴平面MOC⊥平面VAB.…(8分)
解:(3)∵AC⊥BC,且AC=BC=2,
∴$AB=\sqrt{A{C^2}+B{C^2}}=2\sqrt{2}$,
連VO,又VA=VB=4,所以$VO=\sqrt{V{A^2}-A{O^2}}=\sqrt{14}$,
由(2)知:CO⊥平面VAB,
∴三棱錐V-ABC的體積:
${V_{V-ABC}}={V_{C-VAB}}=\frac{1}{3}{S_{△VAB}}CO=\frac{1}{3}×\frac{1}{2}×2\sqrt{2}×\sqrt{14}×\sqrt{2}=\frac{{2\sqrt{14}}}{3}$. …(12分)
點(diǎn)評(píng) 本題考查線面平行、線面垂直的證明,考查三棱錐的體積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x+y-3=0 | B. | x+y+b-a=0 | C. | x+y-a-b=0 | D. | x-y+3=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 最大值8 | B. | 最小值10 | C. | 最大值12 | D. | 最小值14 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com