已知函數(shù)
(1)當(dāng)x=4時,求f(x)的值;
(2)當(dāng)f(x)=2時,求x的值.
【答案】分析:(1)由函數(shù),知當(dāng)x=4時,f(x)=f(4)=,由此能求出結(jié)果.
(2)由函數(shù),f(x)=2,知,由此能求出結(jié)果.
解答:解:(1)∵函數(shù),
∴當(dāng)x=4時,f(x)=f(4)==-3.
(2)∵函數(shù),f(x)=2,

x+2=2x-12,
∴x=14.
點評:本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅省高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(12分)已知函數(shù)

(1)當(dāng)x∈[2,4]時.求該函數(shù)的值域;

(2)若恒成立,求m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省永年二中涉縣一中臨漳一中高三聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

已知函數(shù)

(1)當(dāng)x∈[2,4]時.求該函數(shù)的值域;

(2)若恒成立,求m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式
(1)當(dāng)x∈R時,求f(x)的最小值;
(2)若數(shù)學(xué)公式,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省廣州市海珠區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(1)當(dāng)x≤0時,函數(shù)f(x)在(-1,f(-1))處的切線方程為x-3y+1=0,求m的值;
(2)當(dāng)x>0時,設(shè)f(x)+1的反函數(shù)為g-1(x)(g-1(x)的定義域即是f(x)+1的值域).證明:函數(shù)在區(qū)間(e,3)內(nèi)無零點,在區(qū)間(3,e2)內(nèi)有且只有一個零點;
(3)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省重點中學(xué)高考數(shù)學(xué)一輪復(fù)習(xí)課時練精品:21-24 (解析版) 題型:解答題

已知函數(shù)
(1)當(dāng)x∈R時,求f(x)的最小值;
(2)若,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案