下列命題:
①若A、B、C、D是空間任意四點,則有數(shù)學(xué)公式
數(shù)學(xué)公式,則數(shù)學(xué)公式共線的充要條件是:數(shù)學(xué)公式;
③若數(shù)學(xué)公式共線,則表示數(shù)學(xué)公式的有向線段所在直線平行;
④對空間任意一點O與不共線的三點A、B、C,若數(shù)學(xué)公式(其中x、y、z∈R)且x+y+z=1,則P、A、B、C四點共面.
其中不正確命題的個數(shù)是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
A
分析:①由向量加法的三角形法則可判正確;②由向量共線的定理可得正確;③可得表示的有向線段所在的直線平行,或表示的有向線段所在的直線為同一條直線;④可得,由向量的運算性質(zhì)可得得,所以向量,共面,進(jìn)而可得P、A、B、C四點共面.
解答:①A、B、C、D是空間任意四點,由向量加法的三角形法則
可得=,故正確;
②由向量共線的定理可得:,則共線的充要條件是:,故正確;
③若共線,則表示的有向線段所在的直線平行,或表示的有向線段所在的直線為同一條直線,故錯誤;
④對空間任意一點O與不共線的三點A、B、C,若(其中x、y、z∈R)且x+y+z=1,
則可得,即=x()+y(),
故可得,所以向量,共面,故P、A、B、C四點共面,故正確.
所以不正確命題僅有③,即不正確命題的個數(shù)是1.
故選A
點評:本題考查命題真假的判斷與應(yīng)用,涉及向量的共線和共面的知識,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:
①若a與b互為相反向量,則a+b=0;
②若k為實數(shù),且k•a=0,則a=0或k=0;
③若a•b=0,則a=0或b=0;
④若a與b為平行的向量,則a•b=|a||b|;
⑤若|a|=1,則a=±1.
其中假命題的個數(shù)為( 。
A、5個B、4個C、3個D、2個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:
①若a,b,m都是正數(shù),且
a+m
b+m
a
b
,則b>a;      
②已知a,b都為實數(shù),若|a+b|<|a|+|b|,則ab<0;       
 ③若a,b,c為△ABC的三條邊,則a2+b2+c2>2(ab+bc+ca);
④若a>b>c,則
1
a-b
+
1
b-c
+
1
c-a
>0.
其中正確命題的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:①若a與b互為相反向量,則a+b=0;②若k為實數(shù),且k•a=0,則a=0或k=0;③若a•b=0,則a=0或b=0;④若a與b為平行的向量,則a•b=|a||b|;⑤若|a|=1,則a=±1.其中假命題的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4、下列命題中:①若A∈α,B∈α,則AB?α;②若A∈α,A∈β,則α、β一定相交于一條直線,設(shè)為m,且A∈m ③經(jīng)過三個點有且只有一個平面  ④若a⊥b,c⊥b,則a∥c.確命題的個數(shù)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列命題中:①若a、b共線,則a、b所在的直線平行;②若a、b所在的直線是異面直線,則a、b一定不共面;③若ab、c三向量兩兩共面,則a、b、c三向量一定也共面;④已知三向量ab、c,則空間任意一個向量p總可以唯一表示為p=xa+yb+zc.其中正確命題的個數(shù)為(  )

A.0                B.1                C.2                D.3

查看答案和解析>>

同步練習(xí)冊答案