設(shè)集合A為函數(shù)y=lg
1+x
2-x
的定義域,集合B為不等式(ax-1)(x+2)(a>0)的解集.
(Ⅰ)若a=1,求A∩B;
(Ⅱ)若B⊆CRA,求實數(shù)a的取值范圍.
∵函數(shù)y=lg
1+x
2-x
的定義域為(-1,2)
故A=(-1,2)
(1)當(dāng)a=1時,不等式(ax-1)(x+2)≥0可化為(x-1)(x+2)≥0
解得B=(-∞,-2]∪[1,+∞)
∴A∩B=[1,2)
(2)∵CRA=(-∞,-1]∪[2,+∞)
又∵a>0
∴B=(-∞,-2]∪[
1
a
,+∞)
若B⊆CRA,
1
a
≥2,即0<a≤
1
2

故實數(shù)a的取值范圍是(0,
1
2
]
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A為函數(shù)y=lg
1+x2-x
的定義域,集合B為不等式(ax-1)(x+2)(a>0)的解集.
(Ⅰ)若a=1,求A∩B;
(Ⅱ)若B⊆CRA,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案