已知函數(shù)為常數(shù)).
(Ⅰ)求函數(shù)的定義域;
(Ⅱ)若,,求函數(shù)的值域;
(Ⅲ)若函數(shù)的圖像恒在直線的上方,求實(shí)數(shù)的取值范圍.
(Ⅰ);(Ⅱ);(Ⅲ)且
解析試題分析:(1)對(duì)數(shù)中真數(shù)大于0(2)思路:要先求真數(shù)的范圍再求對(duì)數(shù)的范圍。求真數(shù)范圍時(shí)用配方法,求對(duì)數(shù)范圍時(shí)用點(diǎn)調(diào)性(3)要使函數(shù)的圖像恒在直線的上方,則有 在上恒成立。把看成整體,令即在上恒成立,轉(zhuǎn)化成單調(diào)性求最值問(wèn)題
試題解析:(Ⅰ)
所以定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/61/6/17qdh2.png" style="vertical-align:middle;" />
(Ⅱ)時(shí) 令 則
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/61/0/1dajs3.png" style="vertical-align:middle;" /> 所以,所以 即
所以函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1d/3/1bsnk.png" style="vertical-align:middle;" />
(Ⅲ)
要使函數(shù)的圖像恒在直線的上方
則有 在上恒成立。 令 則
即在上恒成立
的圖像的對(duì)稱軸為且
所以在上單調(diào)遞增,要想恒成立,只需
即
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/55/7/1dant2.png" style="vertical-align:middle;" />且 所以 且
考點(diǎn):(1)對(duì)數(shù)的定義域(2)對(duì)數(shù)的單調(diào)性(3)恒成立問(wèn)題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)是偶函數(shù)。
(1)求的值;
(2)設(shè)函數(shù),其中實(shí)數(shù)。若函數(shù)與的圖象有且只有一個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),h(x)=2alnx,.
(1)當(dāng)a∈R時(shí),討論函數(shù)的單調(diào)性;
(2)是否存在實(shí)數(shù)a,對(duì)任意的,且,都有
恒成立,若存在,求出a的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn),點(diǎn)在曲線:上.
(1)若點(diǎn)在第一象限內(nèi),且,求點(diǎn)的坐標(biāo);
(2)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在一條筆直的工藝流水線上有個(gè)工作臺(tái),將工藝流水線用如圖所示的數(shù)軸表示,各工作臺(tái)的坐標(biāo)分別為,,,,每個(gè)工作臺(tái)上有若干名工人.現(xiàn)要在流水線上建一個(gè)零件供應(yīng)站,使得各工作臺(tái)上的所有工人到供應(yīng)站的距離之和最短.
(Ⅰ)若,每個(gè)工作臺(tái)上只有一名工人,試確定供應(yīng)站的位置;
(Ⅱ)若,工作臺(tái)從左到右的人數(shù)依次為,,,,,試確定供應(yīng)站的位置,并求所有工人到供應(yīng)站的距離之和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
為了降低能源損耗,某體育館的外墻需要建造隔熱層.體育館要建造可使用年的隔熱層,每厘米厚的隔熱層建造成本為萬(wàn)元.該建筑物每年的能源消耗費(fèi)用(單位:萬(wàn)元)與隔熱層厚度(單位:)滿足關(guān)系:(,為常數(shù)),若不建隔熱層,每年能源消耗費(fèi)用為萬(wàn)元.設(shè)為隔熱層建造費(fèi)用與年的能源消耗費(fèi)用之和.
(1)求的值及的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,是一個(gè)矩形花壇,其中AB=4米,AD=3米.現(xiàn)將矩形花壇擴(kuò)建成一個(gè)更大的矩形花園,要求:B在上,D在上,對(duì)角線過(guò)C點(diǎn),且矩形的面積小于64平方米.
(Ⅰ)設(shè)長(zhǎng)為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并寫(xiě)出該函數(shù)的定義域;
(Ⅱ)當(dāng)的長(zhǎng)度是多少時(shí),矩形的面積最小?并求最小面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com